38 research outputs found

    STOCHASTIC DUELS FOR EVALUATING GROUND-BASED ANTI-SHIP SYSTEMS

    Get PDF
    The Ground-Based Anti-Ship Missile (GBASM) is a critical capability at the center of the Marine Corps’ concept of Expeditionary Advanced Base Operations and Force Design 2030 initiatives. This research formulates stochastic models for the evaluation of the efficiency and effectiveness of varying GBASM battery configurations in the context of a duel with a surface ship. The models produced are discrete-time Markov chains that model duels between a Blue GBASM battery and a Red surface ship. The models are parameterized to account for varying factors including lethality of Blue and Red, and evaluate salvos based on the number of GBASM delivery platforms and the number of missiles shot per platform. The primary output of this research is a modeling framework that allows an analyst to robustly analyze GBASM systems. Insights from the models reinforce Wayne Hughes’ mantra of “fire effectively first,” and highlight the importance of Blue being able to mass fires into an effective salvo.HQMC Programs and Resources (P&R), Washington D.C.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Operations Research in the High Tech Military Environment: A Survey

    Get PDF
    The use of operations research as a technology to solve many of the problems of government and industry has become a major field of study within the very short span of the last fifty years. In the paper entitled, Operations Research in the High Tech Military Environment: A Survey, the reader is provided with a better understanding of the tenets of operations research through an examination of a representative sample of the latest operations research applications developed for the high tech environment. Initially, this involves providing the reader with some fundamental insights into what operations research is, what its practitioners do, and how the state-of-the-art has evolved to its present form. It then involves providing a brief description of what is meant by the term, high tech military environment. A survey, which constitutes the bulk of the material presented, focuses on how various operations research methodologies are being used within that environment. The paper concludes with a discussion of the possible directions operations research will take in the future, based on the present state-of-the-art

    Decision Factors for Cooperative Multiple Warhead UAV Target Classification and Attack with Control Applications

    Get PDF
    Autonomous wide area search, classification and attack using Unmanned Combat Air Vehicles (UCAVs) is considered. The wide area search and attack scenario is modeled, capturing important problem parameters related to environment, seeker, and munitions. Probabilistic analysis is used to formulate and analytically solve for various probabilities, including the probability of mission success. Two methods are utilized. The first examines the sub-events required for various events to occur. The second utilizes a Markov chain approach. General expressions are first obtained that are applicable to any assumed a priori distributions of targets and false targets. These expressions are subsequently applied to a multiple warhead munition/UCAV operating in several multiple target/multiple false target scenarios. Examples of application of the analytically derived results are given for all facets of the system design and operation of Wide Area Search Munitions including the evaluation of cooperation schemes and rules of engagement. The problem is formulated as a control problem, and the possibility of adaptive control based on estimation of environmental parameters is examined

    Computational methods for tactical simulations

    Get PDF
    Tämä taktiikan tutkimus keskittyy tietokoneavusteisen simuloinnin laskennallisiin menetelmiin, joita voidaan käyttää taktisen tason sotapeleissä. Työn tärkeimmät tuotokset ovat laskennalliset mallit todennäköisyyspohjaisen analyysin mahdollistaviin taktisen tason taistelusimulaattoreihin, joita voidaan käyttää vertailevaan analyysiin joukkue-prikaatitason tarkastelutilanteissa. Laskentamallit keskittyvät vaikuttamiseen. Mallit liittyvät vahingoittavan osuman todennäköisyyteen, jonka perusteella vaikutus joukossa on mallinnettu tilakoneina ja Markovin ketjuina. Edelleen näiden tulokset siirretään tapahtumapuuanalyysiin operaation onnistumisen todennäköisyyden osalta. Pienimmän laskentayksikön mallinnustaso on joukkue- tai ryhmätasolla, jotta laskenta-aika prikaatitason sotapelitarkasteluissa pysyisi riittävän lyhyenä samalla, kun tulokset ovat riittävän tarkkoja suomalaiseen maastoon. Joukkueiden mies- ja asejärjestelmävahvuudet ovat jakaumamuodossa, eivätkä yksittäisiä lukuja. Simuloinnin integroinnissa voidaan käyttää asejärjestelmäkohtaisia predictor corrector –parametreja, mikä mahdollistaa aika-askelta lyhytaikaisempien taistelukentän ilmiöiden mallintamisen. Asemallien pohjana ovat aiemmat tutkimukset ja kenttäkokeet, joista osa kuuluu tähän väitöstutkimukseen. Laskentamallien ohjelmoitavuus ja käytettävyys osana simulointityökalua on osoitettu tekijän johtaman tutkijaryhmän ohjelmoiman ”Sandis”- taistelusimulointiohjelmiston avulla, jota on kehitetty ja käytetty Puolustusvoimien Teknillisessä Tutkimuslaitoksessa. Sandikseen on ohjelmoitu karttakäyttöliittymä ja taistelun kulkua simuloivia laskennallisia malleja. Käyttäjä tai käyttäjäryhmä tekee taktiset päätökset ja syöttää nämä karttakäyttöliittymän avulla simulointiin, jonka tuloksena saadaan kunkin joukkuetason peliyksikön tappioiden jakauma, keskimääräisten tappioiden osalta kunkin asejärjestelmän aiheuttamat tappiot kuhunkin maaliin, ammuskulutus ja radioyhteydet ja niiden tila sekä haavoittuneiden evakuointi-tilanne joukkuetasolta evakuointisairaalaan asti. Tutkimuksen keskeisiä tuloksia (kontribuutio) ovat 1) uusi prikaatitason sotapelitilanteiden laskentamalli, jonka pienin yksikkö on joukkue tai ryhmä; 2) joukon murtumispisteen määritys tappioiden ja haavoittuneiden evakuointiin sitoutuvien taistelijoiden avulla; 3) todennäköisyyspohjaisen riskianalyysin käyttömahdollisuus vertailevassa tutkimuksessa sekä 4) kokeellisesti testatut tulen vaikutusmallit ja 5) toimivat integrointiratkaisut. Työ rajataan maavoimien taistelun joukkuetason todennäköisyysjakaumat luovaan laskentamalliin, kenttälääkinnän malliin ja epäsuoran tulen malliin integrointimenetelmineen sekä niiden antamien tulosten sovellettavuuteen. Ilmasta ja mereltä maahan -asevaikutusta voidaan tarkastella, mutta ei ilma- ja meritaistelua. Menetelmiä soveltavan Sandis -ohjelmiston malleja, käyttötapaa ja ohjelmistotekniikkaa kehitetään edelleen. Merkittäviä jatkotutkimuskohteita mallinnukseen osalta ovat muun muassa kaupunkitaistelu, vaunujen kaksintaistelu ja maaston vaikutus tykistön tuleen sekä materiaalikulutuksen arviointi.Tactical level war gaming using computational simulation is used in military analysis. In this study, computational methods have been developed in order to simulate brigade level scenarios for comparative studies. The brigade level does not allow analysis of all individual soldiers, because of increased number of entities and small time stepping (one second or less). Thus minute-level time stepping was selected, with a platoon or squad as the smallest entity or agent. The computational models of a platoon level unit use Markov chains and state machines. The platoon level unit is considered as a distribution of unit strengths in order to model the stochastic nature of war. Probabilistic risk analysis is possible as fault tree analysis combines platoon level success probabilities with overall operation success probability. Weapon system effects in the simulation are based on earlier studies adjusted for platoon level targets. Adaptive integration is used in the artillery model and the weapon selective predictor-corrector method to model phenomena within the selected longer time step. Field tests were also used to study the goodness of models and parameters. The computational models were tested and their usability as part of the simulation tool was proved by programming them in the Sandis software. The coding team was led by the author at the Finnish Defence Forces Technical Research Center (PVTT). The Sandis tool is used for comparative combat analysis from platoon to brigade level. The input comprises weapon and communication characteristics, units and their weapons, fault logic for units and operation success, map and user actions for units at the platoon level. The output is the operation success probability, probability of each unit being defeated, unit strength distributions, average combat losses and the killer-victim scoreboard, ammunition consumption, radio network availability and medical evacuation logistics and treatment capacity analysis. During the game, the man in the loop is responsible for tactical decisions. The contribution of this dissertation is a novel war gaming model including a success probability tree for brigade level scenarios and the computational models needed for platoon level units. The integration methods for the artillery model and predictor-corrector method are improvements to previous methods used in Finland. Infantry loss models have been created and a field test conducted. The state machines model the action of soldiers under fire and the secondary effects of combat casualties are studied using the resources needed during the evacuation of casualties. These are used in break point analysis instead of a (constant) break point loss percentage. The study is limited to computational models for creating the probabilistic values for platoon level units and their probabilistic use. Air and naval warfare are not part of the study. As another limitation, only open sources are used. Future studies could examine urban warfare, vehicle duel models and analysis of logistics

    Game-Theoretic Validation and Analysis of Air Combat Simulation Models

    Full text link

    Lanchester-Type Models of Warfare, Volume I

    Get PDF
    The Twentieth Century has been characterized by innumerable attempts to use the Scientific Method as a basis for policy planning in national and international affairs. The emergence of the field of operations research (OR) out of attempts of scientists in the Western Democracies to apply the Scientific Method to military problems during World War II is well known. Since World War II there has been a dramatic growth in both the interest in and use of OR and systems-analysis techniques for such purposes within the U.S. defense establish- ment, especially since the beginning of the so-called McNamara Era of defense planning. A concomitant trend has been an equally dramatic increase in both the number and variety of mathematical models used to support these analytical activities

    Changing DoD’s Analysis Paradigm

    Get PDF
    War gaming and military modeling have a well documented history covering over two centuries, a period that coincides with the inception and evolution of formal professional development for military officers. The term war game used here refers to “a warfare model or simulation that does not involve the operations of actual forces, in which the flow of events affects and is affected by decisions made during the course of those events by players representing opposing sides.

    Coordinating Team Tactics for Swarm-vs.-Swarm Adversarial Games

    Get PDF
    While swarms of UAVs have received much attention in the last few years, adversarial swarms (i.e., competitive, swarm-vs.-swarm games) have been less well studied. In this dissertation, I investigate the factors influential in team-vs.-team UAV aerial combat scenarios, elucidating the impacts of force concentration and opponent spread in the engagement space. Specifically, this dissertation makes the following contributions: (1) Tactical Analysis: Identifies conditions under which either explicitly-coordinating tactics or decentralized, greedy tactics are superior in engagements as small as 2-vs.-2 and as large as 10-vs.-10, and examines how these patterns change with the quality of the teams' weapons; (2) Coordinating Tactics: Introduces and demonstrates a deep-reinforcement-learning framework that equips agents to learn to use their own and their teammates' situational context to decide which pre-scripted tactics to employ in what situations, and which teammates, if any, to coordinate with throughout the engagement; the efficacy of agents using the neural network trained within this framework outperform baseline tactics in engagements against teams of agents employing baseline tactics in N-vs.-N engagements for N as small as two and as large as 64; and (3) Bio-Inspired Coordination: Discovers through Monte-Carlo agent-based simulations the importance of prioritizing the team's force concentration against the most threatening opponent agents, but also of preserving some resources by deploying a smaller defense force and defending against lower-penalty threats in addition to high-priority threats to maximize the remaining fuel within the defending team's fuel reservoir.Ph.D

    Evolution of bow-arrow technology.

    Get PDF
    This thesis examines the development of bow-arrow technology in terms of modem evolutionary theory. Previous approaches that propose functional-adaptive technological trajectories are critiqued. Different theoretical approaches towards technology and associated units of analysis are examined. Behavioural ecology, evolutionary archaeology, and dual inheritance theory are shown to hold most promise for explaining trait-lineages in a given technological tradition. Previous approaches to bow-arrow technology are analysed, and an evolutionary archaeological methodology appropriate for examining lithic armatures is presented. Environment, historical contingency, selection, drift, population dynamics and social learning mechanisms are seen as key complex factors requiring case by case examination. An evolutionary case study with nine temporally, geographically, and culturally related stratigraphic phases containing a total of 3600 complete lithic armatures from the south Scandinavian middle Mesolithic (c. 6600-5400 BC) is presented. The phases are described in terms of associated fine-grained archaeological data and previous interpretations. A Bayesian chronological framework is constructed for the case study, using modelling facilities in the OxCal calibration package. This method time-steps and calculates relative occupation durations of point bearing phases in terms of available archaeological and radiometric data. The chronological model covers the culture-historical periods termed Blak, Kongemose and Early Ertebolle phases. The validity of previous typological interpretations of projectile point sequences is questioned in light of these results. The nine time-stepped lithic armature assemblages are then analysed to describe inter- and intra-site point trait variation. A linked series of descriptive and multivariate statistical techniques identify key morphological attributes that summarise trait variation within and between phases. Variation is graphically represented and related to different social learning populations, reduction strategies, and engineering constraints. A remarkably long-term homogenous pattern of complex projectile point manufacture is found for the Kongemose phases, compared to the temporally bracketing Blak and Ertebolle phases. Faunal, climatic, and population level factors are then modelled to account for variation and stability of the case study's armature traits. Faunal data from the Tagerup and Segebro sites, spanning the case study period, are examined for possible diet breadth changes, in relation to point-trait variation. No functional relationship is found between point-shape and potential target-prey. A population model is then constructed in OxCal using all published south Scandinavian radiometric data from the final Maglemose to the final Ertebolle cultural phases. A simple model of landmass reduction, forestation cover and mammalian population density levels demonstrates reduced land mass alone would not significantly affect human population levels - even with relatively high human population densities. Holocene 5180 and A14C data is used as a proxy for contemporaneous climatic fluctuations. These proxies are plotted and superimposed onto the population graph. A correlation between climate change, population fluctuation, and projectile point technology is found. As changes in point morphology and lithic reduction strategies coincide with apparent regional drops in population, drift processes may account for some variation in point-shape
    corecore