1,464 research outputs found

    Unnatural Selection: A new formal approach to punctuated equilibrium in economic systems

    Get PDF
    Generalized Darwinian evolutionary theory has emerged as central to the description of economic process (e.g., Aldrich et. al., 2008). Here we demonstrate that, just as Darwinian principles provide necessary, but not sufficient, conditions for understanding the dynamics of social entities, in a similar manner the asymptotic limit theorems of information theory provide another set of necessary conditions that constrain the evolution of socioeconomic process. These latter constraints can, however, easily be formulated as a statistics-like analytic toolbox for the study of empirical data that is consistent with a generalized Darwinism, and this is no small thing

    The Evolutionary Unfolding of Complexity

    Get PDF
    We analyze the population dynamics of a broad class of fitness functions that exhibit epochal evolution---a dynamical behavior, commonly observed in both natural and artificial evolutionary processes, in which long periods of stasis in an evolving population are punctuated by sudden bursts of change. Our approach---statistical dynamics---combines methods from both statistical mechanics and dynamical systems theory in a way that offers an alternative to current ``landscape'' models of evolutionary optimization. We describe the population dynamics on the macroscopic level of fitness classes or phenotype subbasins, while averaging out the genotypic variation that is consistent with a macroscopic state. Metastability in epochal evolution occurs solely at the macroscopic level of the fitness distribution. While a balance between selection and mutation maintains a quasistationary distribution of fitness, individuals diffuse randomly through selectively neutral subbasins in genotype space. Sudden innovations occur when, through this diffusion, a genotypic portal is discovered that connects to a new subbasin of higher fitness genotypes. In this way, we identify innovations with the unfolding and stabilization of a new dimension in the macroscopic state space. The architectural view of subbasins and portals in genotype space clarifies how frozen accidents and the resulting phenotypic constraints guide the evolution to higher complexity.Comment: 28 pages, 5 figure

    Fitness and entropy production in a cell population dynamics with epigenetic phenotype switching

    Full text link
    Motivated by recent understandings in the stochastic natures of gene expression, biochemical signaling, and spontaneous reversible epigenetic switchings, we study a simple deterministic cell population dynamics in which subpopulations grow with different rates and individual cells can bi-directionally switch between a small number of different epigenetic phenotypes. Two theories in the past, the population dynamics and thermodynamics of master equations, separatedly defined two important concepts in mathematical terms: the {\em fitness} in the former and the (non-adiabatic) {\em entropy production} in the latter. Both play important roles in the evolution of the cell population dynamics. The switching sustains the variations among the subpopulation growth thus continuous natural selection. As a form of Price's equation, the fitness increases with (ii) natural selection through variations and (ii)(ii) a positive covariance between the per capita growth and switching, which represents a Lamarchian-like behavior. A negative covariance balances the natural selection in a fitness steady state | "the red queen" scenario. At the same time the growth keeps the proportions of subpopulations away from the "intrinsic" switching equilibrium of individual cells, thus leads to a continous entropy production. A covariance, between the per capita growth rate and the "chemical potential" of subpopulation, counter-acts the entropy production. Analytical results are obtained for the limiting cases of growth dominating switching and vice versa.Comment: 16 page

    Multigame Effect in Finite Populations Induces Strategy Linkage Between Two Games

    Get PDF
    Evolutionary game dynamics with two 2-strategy games in a finite population has been investigated in this study. Traditionally, frequency-dependent evolutionary dynamics are modeled by deterministic replicator dynamics under the assumption that the population size is infinite. However, in reality, population sizes are finite. Recently, stochastic processes in finite populations have been introduced into evolutionary games in order to study finite size effects in evolutionary game dynamics. However, most of these studies focus on populations playing only single games. In this study, we investigate a finite population with two games and show that a finite population playing two games tends to evolve toward a specific direction to form particular linkages between the strategies of the two games

    Competing Conventions

    Get PDF

    Darwinism, probability and complexity : market-based organizational transformation and change explained through the theories of evolution

    Get PDF
    The study of transformation and change is one of the most important areas of social science research. This paper synthesizes and critically reviews the emerging traditions in the study of change dynamics. Three mainstream theories of evolution are introduced to explain change: the Darwinian concept of survival of the fittest, the Probability model and the Complexity approach. The literature review provides a basis for development of research questions that search for a more comprehensive understanding of organizational change. The paper concludes by arguing for the development of a complementary research tradition, which combines an evolutionary and organizational analysis of transformation and change

    The Evolution of Coordination under Inertia

    Get PDF
    This paper models the phenomenon of inertia driven by individual strategy switching costs in a stochastic evolutionary context. Kandori, Mailath, and Rob's (1993) model of a finite population of agents repeatedly playing a 2x2 symmetric coordination game is extended to allow for such inertia. Taking noise to the limit, a number of new short- to medium-run equilibria emerge, centred around the mixed-strategy equilibrium. Thus, unusually, an evolutionary model is seen to provide some justification for the controversial concept of mixed-strategy equilibrium. However, Kandori, Mailath, and Rob's long-run selection of the risk-dominant equilibrium continues to hold, both under fixed-rate mutations and under state-dependent mutations driven by stochastic switching costs. The key to this is the satisfaction of Blume's (1999) "skew-symmetry" of the noise process, which is shown to be crucial even under simultaneous strategy revisions. In fact, the presence of the new short-run equilibria can under certain conditions serve to reduce the expected waiting time before the risk-dominant equilibrium is reached - an instance of Ellison's (2000) idea that evolution is more rapid when it can proceed via a series of small "steps" between extremes. This suggests inertia to be a surprisingly efficient phenomenon, and also serves to moderate the force of the Ellison (1993) critique of excessively long transition times in models with vanishing noise.
    corecore