1,502 research outputs found

    Modeling And Analysis Of Cascading Effects Of Weapons Of Mass Destruction (Wmd) Events On Critical Infrastructure Systems

    Get PDF
    This research studies how the global network behaves after a Weapon of Mass Destruction (WMD) attack. The goal is to find a reliable model that will help capture the behavior of the network in the event of a WMD attack and then proceed to a systematic analysis of that model. We discuss a hierarchical model that visualizes how a WMD attack will impact different infrastructure systems

    Missile system support locations optimization

    Get PDF
    Issued as Final summary report, Project no. E-24-64

    Quantitative dependability and interdependency models for large-scale cyber-physical systems

    Get PDF
    Cyber-physical systems link cyber infrastructure with physical processes through an integrated network of physical components, sensors, actuators, and computers that are interconnected by communication links. Modern critical infrastructures such as smart grids, intelligent water distribution networks, and intelligent transportation systems are prominent examples of cyber-physical systems. Developed countries are entirely reliant on these critical infrastructures, hence the need for rigorous assessment of the trustworthiness of these systems. The objective of this research is quantitative modeling of dependability attributes -- including reliability and survivability -- of cyber-physical systems, with domain-specific case studies on smart grids and intelligent water distribution networks. To this end, we make the following research contributions: i) quantifying, in terms of loss of reliability and survivability, the effect of introducing computing and communication technologies; and ii) identifying and quantifying interdependencies in cyber-physical systems and investigating their effect on fault propagation paths and degradation of dependability attributes. Our proposed approach relies on observation of system behavior in response to disruptive events. We utilize a Markovian technique to formalize a unified reliability model. For survivability evaluation, we capture temporal changes to a service index chosen to represent the extent of functionality retained. In modeling of interdependency, we apply correlation and causation analyses to identify links and use graph-theoretical metrics for quantifying them. The metrics and models we propose can be instrumental in guiding investments in fortification of and failure mitigation for critical infrastructures. To verify the success of our proposed approach in meeting these goals, we introduce a failure prediction tool capable of identifying system components that are prone to failure as a result of a specific disruptive event. Our prediction tool can enable timely preventative actions and mitigate the consequences of accidental failures and malicious attacks --Abstract, page iii

    Resilience-driven planning and operation of networked microgrids featuring decentralisation and flexibility

    Get PDF
    High-impact and low-probability extreme events including both man-made events and natural weather events can cause severe damage to power systems. These events are typically rare but featured in long duration and large scale. Many research efforts have been conducted on the resilience enhancement of modern power systems. In recent years, microgrids (MGs) with distributed energy resources (DERs) including both conventional generation resources and renewable energy sources provide a viable solution for the resilience enhancement of such multi-energy systems during extreme events. More specifically, several islanded MGs after extreme events can be connected with each other as a cluster, which has the advantage of significantly reducing load shedding through energy sharing among them. On the other hand, mobile power sources (MPSs) such as mobile energy storage systems (MESSs), electric vehicles (EVs), and mobile emergency generators (MEGs) have been gradually deployed in current energy systems for resilience enhancement due to their significant advantages on mobility and flexibility. Given such a context, a literature review on resilience-driven planning and operation problems featuring MGs is presented in detail, while research limitations are summarised briefly. Then, this thesis investigates how to develop appropriate planning and operation models for the resilience enhancement of networked MGs via different types of DERs (e.g., MGs, ESSs, EVs, MESSs, etc.). This research is conducted in the following application scenarios: 1. This thesis proposes novel operation strategies for hybrid AC/DC MGs and networked MGs towards resilience enhancement. Three modelling approaches including centralised control, hierarchical control, and distributed control have been applied to formulate the proposed operation problems. A detailed non-linear AC OPF algorithm is employed to model each MG capturing all the network and technical constraints relating to stability properties (e.g., voltage limits, active and reactive power flow limits, and power losses), while uncertainties associated with renewable energy sources and load profiles are incorporated into the proposed models via stochastic programming. Impacts of limited generation resources, load distinction intro critical and non-critical, and severe contingencies (e.g., multiple line outages) are appropriately captured to mimic a realistic scenario. 2. This thesis introduces MPSs (e.g., EVs and MESSs) into the suggested networked MGs against the severe contingencies caused by extreme events. Specifically, time-coupled routing and scheduling characteristics of MPSs inside each MG are modelled to reduce load shedding when large damage is caused to each MG during extreme events. Both transportation networks and power networks are considered in the proposed models, while transporting time of MPSs between different transportation nodes is also appropriately captured. 3. This thesis focuses on developing realistic planning models for the optimal sizing problem of networked MGs capturing a trade-off between resilience and cost, while both internal uncertainties and external contingencies are considered in the suggested three-level planning model. Additionally, a resilience-driven planning model is developed to solve the coupled optimal sizing and pre-positioning problem of MESSs in the context of decentralised networked MGs. Internal uncertainties are captured in the model via stochastic programming, while external contingencies are included through the three-level structure. 4. This thesis investigates the application of artificial intelligence techniques to power system operations. Specifically, a model-free multi-agent reinforcement learning (MARL) approach is proposed for the coordinated routing and scheduling problem of multiple MESSs towards resilience enhancement. The parameterized double deep Q-network method (P-DDQN) is employed to capture a hybrid policy including both discrete and continuous actions. A coupled power-transportation network featuring a linearised AC OPF algorithm is realised as the environment, while uncertainties associated with renewable energy sources, load profiles, line outages, and traffic volumes are incorporated into the proposed data-driven approach through the learning procedure.Open Acces

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    A Holistic Approach to Service Survivability

    Get PDF
    We present SABER (Survivability Architecture: Block, Evade, React), a proposed survivability architecture that blocks, evades and reacts to a variety of attacks by using several security and survivability mechanisms in an automated and coordinated fashion. Contrary to the ad hoc manner in which contemporary survivable systems are built--using isolated, independent security mechanisms such as firewalls, intrusion detection systems and software sandboxes--SABER integrates several different technologies in an attempt to provide a unified framework for responding to the wide range of attacks malicious insiders and outsiders can launch. This coordinated multi-layer approach will be capable of defending against attacks targeted at various levels of the network stack, such as congestion-based DoS attacks, software-based DoS or code-injection attacks, and others. Our fundamental insight is that while multiple lines of defense are useful, most conventional, uncoordinated approaches fail to exploit the full range of available responses to incidents. By coordinating the response, the ability to survive even in the face of successful security breaches increases substantially. We discuss the key components of SABER, how they will be integrated together, and how we can leverage on the promising results of the individual components to improve survivability in a variety of coordinated attack scenarios. SABER is currently in the prototyping stages, with several interesting open research topics

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed
    • …
    corecore