100,412 research outputs found

    Stochastic Constraint Programming

    Full text link
    To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number of complete algorithms and approximation procedures. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare with other approaches for decision making under uncertainty.Comment: Proceedings of the 15th Eureopean Conference on Artificial Intelligenc

    Hybrid Behaviour of Markov Population Models

    Full text link
    We investigate the behaviour of population models written in Stochastic Concurrent Constraint Programming (sCCP), a stochastic extension of Concurrent Constraint Programming. In particular, we focus on models from which we can define a semantics of sCCP both in terms of Continuous Time Markov Chains (CTMC) and in terms of Stochastic Hybrid Systems, in which some populations are approximated continuously, while others are kept discrete. We will prove the correctness of the hybrid semantics from the point of view of the limiting behaviour of a sequence of models for increasing population size. More specifically, we prove that, under suitable regularity conditions, the sequence of CTMC constructed from sCCP programs for increasing population size converges to the hybrid system constructed by means of the hybrid semantics. We investigate in particular what happens for sCCP models in which some transitions are guarded by boolean predicates or in the presence of instantaneous transitions

    Biochemical Reaction Rules with Constraints

    Get PDF
    International audienceWe propose React(C), an expressive programming language for stochastic modeling and simulation in systems biology, that is based on biochemical reactions with constraints. We prove that React(C) can express the stochastic pi-calculus, in contrast to previous rule-based programming languages, and further illustrate the high expressiveness of React(C). We present a stochastic simulator for React(C) independently of the choice of the constraint language C. Our simulator must decide for a given reaction rule whether it can be applied to the current biochemical solution. We show that this decision problem is NP-complete for arbitrary constraint systems C, and that it can be solved in polynomial time for rules of bounded arity. In practice, we propose to solve this problem by constraint programming

    Hybrid Metaheuristics for Stochastic Constraint Programming

    Get PDF

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104
    • …
    corecore