2,239 research outputs found

    Stochastic Complementarity for Local Control of Discontinuous Dynamics

    Full text link
    Abstract — We present a method for smoothing discontinuous dynamics involving contact and friction, thereby facilitating the use of local optimization techniques for control. The method replaces the standard Linear Complementarity Problem with a Stochastic Linear Complementarity Problem. The resulting dynamics are continuously differentiable, and the resulting controllers are robust to disturbances. We demonstrate our method on a simulated 6-dimensional manipulation task, which involves a finger learning to spin an anchored object by repeated flicking. I

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Pricing European and American Options under Heston Model using Discontinuous Galerkin Finite Elements

    Full text link
    This paper deals with pricing of European and American options, when the underlying asset price follows Heston model, via the interior penalty discontinuous Galerkin finite element method (dGFEM). The advantages of dGFEM space discretization with Rannacher smoothing as time integrator with nonsmooth initial and boundary conditions are illustrated for European vanilla options, digital call and American put options. The convection dominated Heston model for vanishing volatility is efficiently solved utilizing the adaptive dGFEM. For fast solution of the linear complementary problem of the American options, a projected successive over relaxation (PSOR) method is developed with the norm preconditioned dGFEM. We show the efficiency and accuracy of dGFEM for option pricing by conducting comparison analysis with other methods and numerical experiments

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    A direct method for trajectory optimization of rigid bodies through contact

    Get PDF
    Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning of rigid-body systems that contact their environment through inelastic impacts and Coulomb friction. This method eliminates the requirement for a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem for forward simulation, the proposed algorithm poses the optimization problem as a Mathematical Program with Complementarity Constraints. We leverage Sequential Quadratic Programming to naturally resolve contact constraint forces while simultaneously optimizing a trajectory that satisfies the complementarity constraints. The method scales well to high-dimensional systems with large numbers of possible modes. We demonstrate the approach on four increasingly complex systems: rotating a pinned object with a finger, simple grasping and manipulation, planar walking with the Spring Flamingo robot, and high-speed bipedal running on the FastRunner platform.United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation Program (Grant W91CRB-11-1-0001)National Science Foundation (U.S.) (Grant IIS-0746194)National Science Foundation (U.S.) (Grant IIS-1161909)National Science Foundation (U.S.) (Grant IIS-0915148
    • …
    corecore