309 research outputs found

    Experimental Evaluation and Analysis of LED Illumination Source for Endoscopy Imaging

    Get PDF
    The minimally invasive surgery uses a small instrument with camera and light to fit the tiny cut in the skin. The selection of the light depends on the power and driving current of the circuit. It can also help in the standardization of the camera and capture the tissues' true-colour image. This paper presents the LED source analysis used in the clinical endoscopes for surgery and the human body's medical examination. Initially, a LED source selection mechanism generating intense illuminance in a visible band is proposed. A low-cost prototype model is developed to analyze the wavelength and illuminance of three different LEDs types. An effect on variation in LED illumination is investigated by changing the distance between the Borescope and LED source. True-colour image generation and tissue contrast are more important in medical diagnostics. Therefore, a sigmoid function improving the whole contrast ratio of the captured image in real-time is presented. The results of spectrum and wavelength for a current variation are presented. Type 3 LED produces higher illumination (i.e., 395 Klux) and peak wavelength (i.e., 622.05 nm) than other LEDs, while type-2 LED has better FWHM for the blue colour spectrum. The modification in the sigmoid function enhances the image with 34.25 peak PSNR producing a true-colour image

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    Stochastic Rounding for Image Interpolation and Scan Conversion

    Get PDF
    The stochastic rounding (SR) function is proposed to evaluate and demonstrate the effects of stochastically rounding row and column subscripts in image interpolation and scan conversion. The proposed SR function is based on a pseudorandom number, enabling the pseudorandom rounding up or down any non-integer row and column subscripts. Also, the SR function exceptionally enables rounding up any possible cases of subscript inputs that are inferior to a pseudorandom number. The algorithm of interest is the nearest-neighbor interpolation (NNI) which is traditionally based on the deterministic rounding (DR) function. Experimental simulation results are provided to demonstrate the performance of NNI-SR and NNI-DR algorithms before and after applying smoothing and sharpening filters of interest. Additional results are also provided to demonstrate the performance of NNI-SR and NNI-DR interpolated scan conversion algorithms in cardiac ultrasound videos.Comment: 10 pages, 17 figures, 3 tables. International Journal of Advanced Computer Science and Applications, 202

    Generic Feature Learning for Wireless Capsule Endoscopy Analysis

    Full text link
    The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase)

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE
    • …
    corecore