12,421 research outputs found

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    High-Performance Distributed ML at Scale through Parameter Server Consistency Models

    Full text link
    As Machine Learning (ML) applications increase in data size and model complexity, practitioners turn to distributed clusters to satisfy the increased computational and memory demands. Unfortunately, effective use of clusters for ML requires considerable expertise in writing distributed code, while highly-abstracted frameworks like Hadoop have not, in practice, approached the performance seen in specialized ML implementations. The recent Parameter Server (PS) paradigm is a middle ground between these extremes, allowing easy conversion of single-machine parallel ML applications into distributed ones, while maintaining high throughput through relaxed "consistency models" that allow inconsistent parameter reads. However, due to insufficient theoretical study, it is not clear which of these consistency models can really ensure correct ML algorithm output; at the same time, there remain many theoretically-motivated but undiscovered opportunities to maximize computational throughput. Motivated by this challenge, we study both the theoretical guarantees and empirical behavior of iterative-convergent ML algorithms in existing PS consistency models. We then use the gleaned insights to improve a consistency model using an "eager" PS communication mechanism, and implement it as a new PS system that enables ML algorithms to reach their solution more quickly.Comment: 19 pages, 2 figure

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Stepping Stones to Inductive Synthesis of Low-Level Looping Programs

    Full text link
    Inductive program synthesis, from input/output examples, can provide an opportunity to automatically create programs from scratch without presupposing the algorithmic form of the solution. For induction of general programs with loops (as opposed to loop-free programs, or synthesis for domain-specific languages), the state of the art is at the level of introductory programming assignments. Most problems that require algorithmic subtlety, such as fast sorting, have remained out of reach without the benefit of significant problem-specific background knowledge. A key challenge is to identify cues that are available to guide search towards correct looping programs. We present MAKESPEARE, a simple delayed-acceptance hillclimbing method that synthesizes low-level looping programs from input/output examples. During search, delayed acceptance bypasses small gains to identify significantly-improved stepping stone programs that tend to generalize and enable further progress. The method performs well on a set of established benchmarks, and succeeds on the previously unsolved "Collatz Numbers" program synthesis problem. Additional benchmarks include the problem of rapidly sorting integer arrays, in which we observe the emergence of comb sort (a Shell sort variant that is empirically fast). MAKESPEARE has also synthesized a record-setting program on one of the puzzles from the TIS-100 assembly language programming game.Comment: AAAI 201
    • …
    corecore