607 research outputs found

    Stochastic Analysis on RAID Reliability for Solid-State Drives

    Full text link
    Solid-state drives (SSDs) have been widely deployed in desktops and data centers. However, SSDs suffer from bit errors, and the bit error rate is time dependent since it increases as an SSD wears down. Traditional storage systems mainly use parity-based RAID to provide reliability guarantees by striping redundancy across multiple devices, but the effectiveness of RAID in SSDs remains debatable as parity updates aggravate the wearing and bit error rates of SSDs. In particular, an open problem is that how different parity distributions over multiple devices, such as the even distribution suggested by conventional wisdom, or uneven distributions proposed in recent RAID schemes for SSDs, may influence the reliability of an SSD RAID array. To address this fundamental problem, we propose the first analytical model to quantify the reliability dynamics of an SSD RAID array. Specifically, we develop a "non-homogeneous" continuous time Markov chain model, and derive the transient reliability solution. We validate our model via trace-driven simulations and conduct numerical analysis to provide insights into the reliability dynamics of SSD RAID arrays under different parity distributions and subject to different bit error rates and array configurations. Designers can use our model to decide the appropriate parity distribution based on their reliability requirements.Comment: 12 page

    Redundancy and Aging of Efficient Multidimensional MDS-Parity Protected Distributed Storage Systems

    Full text link
    The effect of redundancy on the aging of an efficient Maximum Distance Separable (MDS) parity--protected distributed storage system that consists of multidimensional arrays of storage units is explored. In light of the experimental evidences and survey data, this paper develops generalized expressions for the reliability of array storage systems based on more realistic time to failure distributions such as Weibull. For instance, a distributed disk array system is considered in which the array components are disseminated across the network and are subject to independent failure rates. Based on such, generalized closed form hazard rate expressions are derived. These expressions are extended to estimate the asymptotical reliability behavior of large scale storage networks equipped with MDS parity-based protection. Unlike previous studies, a generic hazard rate function is assumed, a generic MDS code for parity generation is used, and an evaluation of the implications of adjustable redundancy level for an efficient distributed storage system is presented. Results of this study are applicable to any erasure correction code as long as it is accompanied with a suitable structure and an appropriate encoding/decoding algorithm such that the MDS property is maintained.Comment: 11 pages, 6 figures, Accepted for publication in IEEE Transactions on Device and Materials Reliability (TDMR), Nov. 201

    RAIDX: RAID EXTENDED FOR HETEROGENEOUS ARRAYS

    Get PDF
    The computer hard drive market has diversified with the establishment of solid state disks (SSDs) as an alternative to magnetic hard disks (HDDs). Each hard drive technology has its advantages: the SSDs are faster than HDDs but the HDDs are cheaper. Our goal is to construct a parallel storage system with HDDs and SSDs such that the parallel system is as fast as the SSDs. Achieving this goal is challenging since the slow HDDs store more data and become bottlenecks, while the SSDs remain idle. RAIDX is a parallel storage system designed for disks of different speeds, capacities and technologies. The RAIDX hardware consists of an array of disks; the RAIDX software consists of data structures and algorithms that allow the disks to be viewed as a single storage unit that has capacity equal to the sum of the capacities of its disks, failure rate lower than the failure rate of its individual disks, and speeds close to that of its faster disks. RAIDX achieves its performance goals with the aid of its novel parallel data organization technique that allows storage data to be moved on the fly without impacting the upper level file system. We show that storage data accesses satisfy the locality of reference principle, whereby only a small fraction of storage data are accessed frequently. RAIDX has a monitoring program that identifies frequently accessed blocks and a migration program that moves frequently accessed blocks to faster disks. The faster disks are caches that store the solo copy of frequently accessed data. Experimental evaluation has shown that a HDD+SSD RAIDX array is as fast as an all-SSD array when the workload shows locality of reference

    Analysis of a Gluonic Penguin Decay with the BaBar Detector

    Get PDF
    This thesis presents a branching fraction analysis of the neutral B meson decay channel B → ϕK0s where the K0s decays to π0π0. The decay is dominated by gluonic penguin transitions, which have been very important for the main program of BABAR: the search for physics beyond the Standard Model. The decay channel has been established and is included in the CP analysis, which is sensitive to new physics. The data set consists of 227 million BB̅ pairs recorded by the BABAR detector at the Stanford Linear Accelerator Center. Sophisticated analysis techniques have been applied primarily to suppress background from e+e- → quark/anti-quark reactions. The analysis of such rare decay channels with BABAR relies on the availability of a large set of computer simulated data. For that purpose a computer cluster has been built at the University of Tennessee as part of the distributed computing support work for BABAR. The design and performance of the cluster is a main subject of this thesis work

    Dependence-driven techniques in system design

    Get PDF
    Burstiness in workloads is often found in multi-tier architectures, storage systems, and communication networks. This feature is extremely important in system design because it can significantly degrade system performance and availability. This dissertation focuses on how to use knowledge of burstiness to develop new techniques and tools for performance prediction, scheduling, and resource allocation under bursty workload conditions.;For multi-tier enterprise systems, burstiness in the service times is catastrophic for performance. Via detailed experimentation, we identify the cause of performance degradation on the persistent bottleneck switch among various servers. This results in an unstable behavior that cannot be captured by existing capacity planning models. In this dissertation, beyond identifying the cause and effects of bottleneck switch in multi-tier systems, we also propose modifications to the classic TPC-W benchmark to emulate bursty arrivals in multi-tier systems.;This dissertation also demonstrates how burstiness can be used to improve system performance. Two dependence-driven scheduling policies, SWAP and ALoC, are developed. These general scheduling policies counteract burstiness in workloads and maintain high availability by delaying selected requests that contribute to burstiness. Extensive experiments show that both SWAP and ALoC achieve good estimates of service times based on the knowledge of burstiness in the service process. as a result, SWAP successfully approximates the shortest job first (SJF) scheduling without requiring a priori information of job service times. ALoC adaptively controls system load by infinitely delaying only a small fraction of the incoming requests.;The knowledge of burstiness can also be used to forecast the length of idle intervals in storage systems. In practice, background activities are scheduled during system idle times. The scheduling of background jobs is crucial in terms of the performance degradation of foreground jobs and the utilization of idle times. In this dissertation, new background scheduling schemes are designed to determine when and for how long idle times can be used for serving background jobs, without violating predefined performance targets of foreground jobs. Extensive trace-driven simulation results illustrate that the proposed schemes are effective and robust in a wide range of system conditions. Furthermore, if there is burstiness within idle times, then maintenance features like disk scrubbing and intra-disk data redundancy can be successfully scheduled as background activities during idle times

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201

    Durability and Availability of Erasure-Coded Storage Systems with Concurrent Maintenance

    Full text link
    This initial version of this document was written back in 2014 for the sole purpose of providing fundamentals of reliability theory as well as to identify the theoretical types of machinery for the prediction of durability/availability of erasure-coded storage systems. Since the definition of a "system" is too broad, we specifically focus on warm/cold storage systems where the data is stored in a distributed fashion across different storage units with or without continuous operation. The contents of this document are dedicated to a review of fundamentals, a few major improved stochastic models, and several contributions of my work relevant to the field. One of the contributions of this document is the introduction of the most general form of Markov models for the estimation of mean time to failure. This work was partially later published in IEEE Transactions on Reliability. Very good approximations for the closed-form solutions for this general model are also investigated. Various storage configurations under different policies are compared using such advanced models. Later in a subsequent chapter, we have also considered multi-dimensional Markov models to address detached drive-medium combinations such as those found in optical disk and tape storage systems. It is not hard to anticipate such a system structure would most likely be part of future DNA storage libraries. This work is partially published in Elsevier Reliability and System Safety. Topics that include simulation modelings for more accurate estimations are included towards the end of the document by noting the deficiencies of the simplified canonical as well as more complex Markov models, due mainly to the stationary and static nature of Markovinity. Throughout the document, we shall focus on concurrently maintained systems although the discussions will only slightly change for the systems repaired one device at a time.Comment: 58 pages, 20 figures, 9 tables. arXiv admin note: substantial text overlap with arXiv:1911.0032

    Workload Interleaving with Performance Guarantees in Data Centers

    Get PDF
    In the era of global, large scale data centers residing in clouds, many applications and users share the same pool of resources for the purposes of reducing energy and operating costs, and of improving availability and reliability. Along with the above benefits, resource sharing also introduces performance challenges: when multiple workloads access the same resources concurrently, contention may occur and introduce delays in the performance of individual workloads. Providing performance isolation to individual workloads needs effective management methodologies. The challenges of deriving effective management methodologies lie in finding accurate, robust, compact metrics and models to drive algorithms that can meet different performance objectives while achieving efficient utilization of resources. This dissertation proposes a set of methodologies aiming at solving the challenging performance isolation problem in workload interleaving in data centers, focusing on both storage components and computing components. at the storage node level, we focus on methodologies for better interleaving user traffic with background workloads, such as tasks for improving reliability, availability, and power savings. More specifically, a scheduling policy for background workload based on the statistical characteristics of the system busy periods and a methodology that quantitatively estimates the performance impact of power savings are developed. at the storage cluster level, we consider methodologies on how to efficiently conduct work consolidation and schedule asynchronous updates without violating user performance targets. More specifically, we develop a framework that can estimate beforehand the benefits and overheads of each option in order to automate the process of reaching intelligent consolidation decisions while achieving faster eventual consistency. at the computing node level, we focus on improving workload interleaving at off-the-shelf servers as they are the basic building blocks of large-scale data centers. We develop priority scheduling middleware that employs different policies to schedule background tasks based on the instantaneous resource requirements of the high priority applications running on the server node. Finally, at the computing cluster level, we investigate popular computing frameworks for large-scale data intensive distributed processing, such as MapReduce and its Hadoop implementation. We develop a new Hadoop scheduler called DyScale to exploit capabilities offered by heterogeneous cores in order to achieve a variety of performance objectives

    Data Management Strategies for Relative Quality of Service in Virtualised Storage Systems

    No full text
    The amount of data managed by organisations continues to grow relentlessly. Driven by the high costs of maintaining multiple local storage systems, there is a well established trend towards storage consolidation using multi-tier Virtualised Storage Systems (VSSs). At the same time, storage infrastructures are increasingly subject to stringent Quality of Service (QoS) demands. Within a VSS, it is challenging to match desired QoS with delivered QoS, considering the latter can vary dramatically both across and within tiers. Manual efforts to achieve this match require extensive and ongoing human intervention. Automated efforts are based on workload analysis, which ignores the business importance of infrequently accessed data. This thesis presents our design, implementation and evaluation of data maintenance strategies in an enhanced version of the popular Linux Extended 3 Filesystem which features support for the elegant specification of QoS metadata while maintaining compatibility with stock kernels. Users and applications specify QoS requirements using a chmod-like interface. System administrators are provided with a character device kernel interface that allows for profiling of the QoS delivered by the underlying storage. We propose a novel score-based metric, together with associated visualisation resources, to evaluate the degree of QoS matching achieved by any given data layout. We also design and implement new inode and datablock allocation and migration strategies which exploit this metric in seeking to match the QoS attributes set by users and/or applications on files and directories with the QoS actually delivered by each of the filesystem’s block groups. To create realistic test filesystems we have included QoS metadata support in the Impressions benchmarking framework. The effectiveness of the resulting data layout in terms of QoS matching is evaluated using a special kernel module that is capable of inspecting detailed filesystem data on-the-fly. We show that our implementations of the proposed inode and datablock allocation strategies are capable of dramatically improving data placement with respect to QoS requirements when compared to the default allocators
    • …
    corecore