888 research outputs found

    Reliability analysis of a subsystem in aluminium industry plant

    Get PDF

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Profit Analysis of a Two Unit Cold Standby System Operating Under Different Weather Conditions Subject t o Inspection

    Get PDF
    A system, or unit, is said to be working under normal weather conditions if the system is working under prescribed conditions as defined/stated by the definition of reliability of system/unit, otherwise the system is said to be working in abnormal weather conditions. For example, if a car with the capacity for five persons is carrying more than five persons, it will be said to be working under abnormal weather conditions. Another example, if a hydraulic machine having the capacity to lift a maximum weight of 500 tons is lifting a weight of 600 tons, then the machine is working under abnormal weather conditions. Hence, in this situation, work done by the machine is out of its capacity and the machine is working in abnormal weather conditions. If the machine is working within the capacity of the stated conditions, it is said to be working in normal weather conditions. The main purpose of this paper is to analyze the profit of a two-unit system called the standby system that is working under different weather conditions in an inspection facility. There is a single perfect server who visits the system immediately whenever required. A server inspects the unit before repair/replacement of the failed unit. All the mechanical activities done by the server are only possible during normal weather conditions. There are two possibilities after inspection of the unit; either repair of the unit is feasible or not feasible. If repair of the unit is not feasible, then the unit will be replaced immediately by a new unit. Otherwise, the repaired unit works as a new unit. The operative unit undergoes preventive maintenance after a specific (maximum) operation time. All random variables are statistically independent. The failure rate and the rate by which the system undergoes for preventive maintenance are constant whereas the inspection rate, repair rate, and maintenance rate follow negative exponential distributions. The expressions for several reliability measures are derived in steady state conditions using the regenerative point technique and semi-Markov process. The graphical behavior of MTSF, availability and profit function, has been depicted with respect to preventive maintenance rate for arbitrary values of other parameters and costs

    Stochastic Analysis of Two Non-identical Unit Parallel System Incorporating Waiting Time and Preventive Maintenance

    Get PDF
    The reliability of two non-identical unit’s parallel system with two kinds of failures common cause failure and partial failures is inspected. Moreover, the preventive maintenance and waiting time to repair, a significant aspect of reliability analysis, has also been incorporated. The proposed system is assumed to a function properly if at least one of the unit is in operate mode. The system goes for preventive maintenance at random apaches. Supplementary variable technique and Laplace transform have used for solution. Our results are compared with the previous results to observe the effect of preventive maintenance and failure rates on system performance
    • …
    corecore