572 research outputs found

    Dynamical Systems on Networks: A Tutorial

    Full text link
    We give a tutorial for the study of dynamical systems on networks. We focus especially on "simple" situations that are tractable analytically, because they can be very insightful and provide useful springboards for the study of more complicated scenarios. We briefly motivate why examining dynamical systems on networks is interesting and important, and we then give several fascinating examples and discuss some theoretical results. We also briefly discuss dynamical systems on dynamical (i.e., time-dependent) networks, overview software implementations, and give an outlook on the field.Comment: 39 pages, 1 figure, submitted, more examples and discussion than original version, some reorganization and also more pointers to interesting direction

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    The structure and dynamics of multilayer networks

    Get PDF
    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.Comment: In Press, Accepted Manuscript, Physics Reports 201

    Dynamic processes on networks and higher-order structures

    Get PDF
    Higher-order interactions are increasingly recognized as a critical aspect in the modeling of complex systems. Higher-order networks provide a framework for studying the relationship between the structure of higher-order interactions and the function of the complex system. However, little is known about how higher-order interactions affect dynamic processes. In this thesis, we develop general frameworks of percolation aiming at understanding the interplay between higher-order network structures and the critical properties of dynamics. We reveal that degree correlations strongly affect the percolation threshold on higher-order networks and interestingly, the effect of correlations is different on ordinary percolation and higher-order percolation. We further elucidate the mechanisms responsible for the emergence of discontinuous transitions on higher-order networks. Moreover, we show that triadic regulatory interaction, as a general type of higher-order interaction found widely in nature, can turn percolation into a fully-fledged dynamic process that exhibits period doubling and a route to chaos. As an important example of dynamic processes, we further investigate the role of network topology on epidemic spreading. We show that higher-order interactions can induce a non-linear infection kernel in a pandemic, which results in a discontinuous phase transition, hysteresis, and superexponential spreading. Finally, we propose an epidemic model to evaluate the role of automated contact-and-tracing with mobile apps as a new containment measure to mitigate a pandemic. We reveal the non-linear effect on the reduction of the incidence provided by a certain fraction of app adoption in the population and we propose the optimal strategy to mitigate the pandemic with limited resources. Altogether, the thesis provides new insights into the interplay between the topology of higher-order networks and their dynamics. The results obtained may shed light on the research in other areas of interest such as brain functions and epidemic spreading
    corecore