147 research outputs found

    Radiated Immunity Testing of a Device with an External Wire: Repeatibility of Reverberation Chamber Results and Correlation with Anechoic Chamber Results

    Get PDF
    We present the experimental radiated immunity results of an electronic device with an external wire obtained in reverberation and anechoic chambers. Repeatability and reproducibility of reverberation chamber measurements are investigated by repeating the test in three reverberation chambers with different characteristics. We show how the current state of the art allows a statistical control of RC measurement repeatability within an industrial installation, and that a statistical correlation with AC results frequency by frequency is possible in particular cases relevant to automotive application

    Universal behaviour of a wave chaos based electromagnetic reverberation chamber

    Get PDF
    In this article, we present a numerical investigation of three-dimensional electromagnetic Sinai-like cavities. We computed around 600 eigenmodes for two different geometries: a parallelepipedic cavity with one half- sphere on one wall and a parallelepipedic cavity with one half-sphere and two spherical caps on three adjacent walls. We show that the statistical requirements of a well operating reverberation chamber are better satisfied in the more complex geometry without a mechanical mode-stirrer/tuner. This is to the fact that our proposed cavities exhibit spatial and spectral statistical behaviours very close to those predicted by random matrix theory. More specifically, we show that in the range of frequency corresponding to the first few hundred modes, the suppression of non-generic modes (regarding their spatial statistics) can be achieved by reducing drastically the amount of parallel walls. Finally, we compare the influence of losses on the statistical complex response of the field inside a parallelepipedic and a chaotic cavity. We demonstrate that, in a chaotic cavity without any stirring process, the low frequency limit of a well operating reverberation chamber can be significantly reduced under the usual values obtained in mode-stirred reverberation chambers

    Reverberation chambers a la carte: An overview of the different mode-stirring techniques

    Get PDF
    Reverberation chambers (RC), a name inspired in room acoustics, are also known in literature as reverberating, reverb, mode-stirred or mode-tuned chambers. In their basic form, they consist of a shielded metallic enclosure, forming a cavity resonator, together with some mode-stirring mechanism. The main goal of such stirring mechanism is to generate an amplitude-varying electromagnetic field that is ideally statistically uniform

    Probability Distribution of the Quality Factor of a Mode-Stirred Reverberation Chamber

    Full text link
    We derive a probability distribution, confidence intervals and statistics of the quality (Q) factor of an arbitrarily shaped mode-stirred reverberation chamber, based on ensemble distributions of the idealized random cavity field with assumed perfect stir efficiency. It is shown that Q exhibits a Fisher-Snedecor F-distribution whose degrees of freedom are governed by the number of simultaneously excited cavity modes per stir state. The most probable value of Q is between a fraction 2/9 and 1 of its mean value, and between a fraction 4/9 and 1 of its asymptotic (composite Q) value. The arithmetic mean value is found to always exceed the values of all other theoretical metrics for centrality of Q. For a rectangular cavity, we retrieve the known asymptotic Q in the limit of highly overmoded regime.Comment: accepted for publication in IEEE Trans. Electromagn. Compat., 201
    • 

    corecore