81 research outputs found

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    Elliptic rook and file numbers

    Get PDF
    Utilizing elliptic weights, we construct an elliptic analogue of rook numbers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel's q-rook numbers by two additional independent parameters a and b, and a nome p. These are shown to satisfy an elliptic extension of a factorization theorem which in the classical case was established by Goldman, Joichi and White and later was extended to the q-case by Garsia and Remmel. We obtain similar results for our elliptic analogues of Garsia and Remmel's q-file numbers for skyline boards. We also provide an elliptic extension of the j-attacking model introduced by Remmel and Wachs. Various applications of our results include elliptic analogues of (generalized) Stirling numbers of the first and second kind, Lah numbers, Abel numbers, and r-restricted versions thereof.Comment: 45 pages; 3rd version shortened (elliptic rook theory for matchings has been taken out to keep the length of this paper reasonable

    Transitive and Gallai colorings

    Full text link
    A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter systems, matroids and commutative algebras. It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is equal to the matroid rank. This generalizes a result of Erd\H{o}s-Simonovits-S\'os for complete graphs. The number of Gallai (or transitive) colorings of the matroid that use at most kk colors is a polynomial in kk. Also, for any acyclic oriented matroid, represented over the real numbers, the number of transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane arrangement. We count Gallai and transitive colorings of the root system of type A using the maximal number of colors, and show that, when equipped with a natural descent set map, the resulting quasisymmetric function is symmetric and Schur-positive.Comment: 31 pages, 5 figure
    • …
    corecore