174 research outputs found

    Extending the RoboCup Rescue to Support Stigmergy: Experiments and Results

    Get PDF
    Social insects have inspired researches in computer sciences as well asengineers to develop models for coordination and cooperation in multiagent systems.One example of these models is the model of stigmergy. In this model agents useindirect communication (comunication trough the environment) in order to coordinateactions. The RoboCup Rescue simulator is used as a testbed to evaluate this modelin a real world considering a highly constrained scenario of an earthquake. This pa-per investigates the feasibility of using stigmergy in the RoboCup Rescue and theimprovements of performance can be obtained. We extended the RoboCup Rescueenvironment to enable the use of stigmergy by the agents. We compared the results ofa multiagent system that uses stigmergy against two other approaches: a multiagentsystem that uses a greedy strategy and no communication, and a multiagent systemwhere agents communicate via direct messages. Experimental results shown that theuse of stigmergy leads to an improvement on agents’ performance by 9.02% to 38.6%if comparing to the system with no communication and can be statistically equivalentto the system which uses messages, depending on the scenario

    Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search

    Get PDF
    Due to growing endurance, safety and non-invasivity, small drones can be increasingly experimented in unstructured environments. Their moderate computing power can be assimilated into swarm coordination algorithms, performing tasks in a scalable manner. For this purpose, it is challenging to investigate the use of biologically-inspired mechanisms. In this paper the focus is on the coordination aspects between small drones required to perform target search. We show how this objective can be better achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone senses a potential target, by releasing digital pheromone on its location. Multiple pheromone deposits are aggregated, increasing in intensity, but also diffused, to be propagated to neighborhood, and lastly evaporated, decreasing intensity in time. As a consequence, pheromone intensity creates a spatiotemporal attractive potential field coordinating a swarm of drones to visit a potential target. Flocking occurs when drones are spatially organized into groups, whose members have approximately the same heading, and attempt to remain in range between them, for each group. It is an emergent effect of individual rules based on alignment, separation and cohesion. In this paper, we present a novel and fully decentralized model for target search, and experiment it empirically using a multi-agent simulation platform. The different combination strategies are reviewed, describing their performance on a number of synthetic and real-world scenarios

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    Engineering Pervasive Service Ecosystems: The SAPERE approach

    Get PDF
    Emerging pervasive computing services will typically involve a large number of devices and service components cooperating together in an open and dynamic environment. This calls for suitable models and infrastructures promoting spontaneous, situated, and self-adaptive interactions between components. SAPERE (Self-Aware Pervasive Service Ecosystems) is a general coordination framework aimed at facilitating the decentralized and situated execution of self-organizing and self-adaptive pervasive computing services. SAPERE adopts a nature-inspired approach, in which pervasive services are modeled and deployed as autonomous individuals in an ecosystem of other services and devices, all of which interact in accord to a limited set of coordination laws, or eco-laws. In this article, we present the overall rationale underlying SAPERE and its reference architecture. We introduce the eco-laws--based coordination model and show how it can be used to express and easily enforce general-purpose self-organizing coordination patterns. The middleware infrastructure supporting the SAPERE model is presented and evaluated, and the overall advantages of SAPERE are discussed in the context of exemplary use cases

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Self-Organized Structures: Modeling Polistes dominula Nest Construction with Simple Rules

    Get PDF
    The self-organized nest construction behaviors of European paper wasps (Polistes dominula) show potential for adoption in artificial intelligence and robotic systems where centralized control proves challenging. However, P. dominula nest construction mechanisms are not fully understood. This research investigated how nest structures stimulate P. dominula worker action at different stages of nest construction. A novel stochastic site selection model, weighted by simple rules for cell age, height, and wall count, was implemented in a three-dimensional, step-by-step nest construction simulation. The simulation was built on top of a hexagonal coordinate system to improve precision and performance. Real and idealized nest data were used to evaluate simulated nests via two parameters: outer wall counts and compactness numbers. Structures generated with age-based rules were not significantly different from real nest structures along both parameters

    Are Autonomous Mobile Robots Able to Take Over Construction? A Review

    Get PDF
    Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction quality, efficiency, and safety, not to mention flexibility in architectural design. However, unlike production robots used, for instance, in automotive industries, autonomous robots should be designed with special consideration for challenges such as the complexity of the cluttered and dynamic working space, human-robot interactions and inaccuracy in positioning due to the nature of mobile systems and the lack of affordable and precise self-positioning solutions. This paper briefly reviews state-ofthe-art research into automated construction by autonomous mobile robots. We address and classify the relevant studies in terms of applications, materials, and robotic systems. We also identify ongoing challenges and discuss about future robotic requirements for automated construction

    Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    Get PDF
    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation.This work was supported by Ministerio de Economía y Competitividad (Spain) http://www.mineco.gob.es/portal/site/mineco/, project TIN2013-40982-R. Project co-financed with FEDER funds
    • …
    corecore