158 research outputs found

    Elastomeric actuator devices for magnetic resonance imaging

    Get PDF
    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex

    Dielectric Elastomer Actuated Systems and Methods

    Get PDF
    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Dielectric elastomer actuators for binary robotics and mechatronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2006."Includes bibliographical references (p. 145-153).Future robotics and mechatronics applications will require systems that are simple, robust, lightweight and inexpensive. A suggested solution for future systems is binary actuation. Binary actuation is the mechanical analogy to digital electronics, where actuators "flip" between two discrete states. Systems can be simple since low-level feedback control, sensors, wiring and electronics are virtually eliminated. However, conventional actuators, such as DC motors and gearbox are not appropriate for binary robotics because they are complex, heavy, and expensive. This thesis proposes a new actuation technology for binary robotics and mechatronics based on dielectric elastomer (DE) technology. DE actuators are a novel class of polymer actuators that have shown promising low-cost performance. These actuators were not well understood and, as a result, faced major reliability problems. Fundamental studies conducted in this thesis reveal that reliable, high performance DE actuation based on highly viscoelastic polymers can be obtained at high deformation rates, when used under fast, intermittent motion.(cont.) Also, analytical models revealed that viscoelasticity and current leakage through the film govern performance. These results are verified by an in-depth experimental characterizion of DE actuation. A new DE actuator concept using multi-layered diamond-shaped films is proposed. Essential design tools such as reliability/performance trade-offs maps, scaling laws, and design optimization metrics are proposed. A unit binary module is created by combining DE actuators with bistable structures to provide intermittent motion in applications requiring long-duration stateholding. An application example of binary robots for medical interventions inside Magnetic Resonance Imaging (MRI) systems illustrates the technology's potential.by Jean-Sébastien Plante.Ph.D

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Efficient control of series elastic actuators through the exploitation of resonant modes

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (p. 115-117).This thesis explores the efficiency potential inherent to series elastic actuators during oscillatory tasks. Series elastic actuators have a spring intentionally placed at the actuator output that provides good force resolution and filters out high frequency disturbances from the environment. These properties are essential for robotic applications in which interactions with the environment are unknown, because they allow the actuators to maintain stable force control while protecting the drive train from harmful loadings. The spring can also be used to store energy similar to the way animals use their tendons during locomotory tasks. This thesis shows that by operating the actuators at the appropriate frequency, the storage of energy by the springs can be translated into large efficiency gains for the actuator. To show the efficiency gains of the actuator, a control scheme was developed that is capable of operating the actuators at and above their resonant frequency. The control scheme was based on spring force control allowing it to provide protection to the drive train while being robust to changes in link inertia due to manipulator configuration or environmental interactions.(cont.) The control scheme was designed to be sufficient for use in real world applications so as to provide experimental results that are representative of operation on a robot vehicle. The control scheme was implemented on a single-link benchtop test stand which was used to demonstrate the performance of the actuators. Experimental results are presented that demonstrate the conditions under which efficient actuation is possible. By comparing the experimental data to models of the hardware, the mechanisms through which power was lost were determined. The results indicate that at resonance there is the potential to achieve up to twice the efficiency obtained by a rigid actuator, however, in order to do so extra attention is needed in both hardware design and control.by Kevin B. Albert.S.M
    • …
    corecore