456 research outputs found

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Two-parameter nonsmooth grazing bifurcations of limit cycles: classification and open problems

    Get PDF
    This paper proposes a strategy for the classification of codimension-two grazing bifurcations of limit cycles in piecewise smooth systems of ordinary differential equations. Such nonsmooth transitions (C-bifurcations) occur when the cycle interacts with a discontinuity boundary of phase space in a non-generic way. Several such codimension-one events have recently been identified, causing for example period-adding or sudden onset of chaos. Here, the focus is on codimension-two grazings that are local in the sense that the dynamics can be fully described by an appropriate Poincaré map from a neighbourhood of the grazing point (or points) of the critical cycle to itself. It is proposed that codimension-two grazing bifurcations can be divided into three distinct types: either the grazing point is degenerate, or the the grazing cycle is itself degenerate (e.g. non-hyperbolic) or we have the simultaneous occurrence of two grazing events. A careful distinction is drawn between their occurrence in systems with discontinuous states, discontinuous vector fields, or that have discontinuity in some derivative of the vector field. Examples of each kind of bifurcation are presented, mostly derived from mechanical applications. For each example, where possible, principal bifurcation curves characteristic to the codimension-two scenario are presented and general features of the dynamics discussed. Many avenues for future research are opened.

    Dynamical processes in a multi-motor gear drive of heavy slabbing mill

    Get PDF
    A real case study is represented of abrupt failures in a new multi-motor gear drive of vertical rolls in the heavy slabbing mill. Modal analysis is conducted, and the lowest torsional vibration modes are verified by the data from an industrial plant. Conditions of parametric resonances due to variable stiffness of teeth are determined within the range of working speed. The branched gear drive is investigated by the non-linear dynamical model with backlashes. It is shown that instantaneous dynamic loads in driveline are strongly dependent on the difference in gap sizes and phase shift between two intermediate gears in the output gear wheel coupling. Deviation in electrical parameters by 0.5 % is considered as the additional cause of not equal load sharing of parallel motors. Results of this research allowed preventing further failures of the gearbox and optimizing slabbing mill control. The proposed approach can be used in other multi-motor machines

    The wave energy converter control competition (WECCCOMP): Wave energy control algorithms compared in both simulation and tank testing

    Get PDF
    The wave energy control competition established a benchmark problem which was offered as an open challenge to the wave energy system control community. The competition had two stages: In the first stage, competitors used a standard wave energy simulation platform (WEC-Sim) to evaluate their controllers while, in the second stage, competitors were invited to test their controllers in a real-time implementation on a prototype system in a wave tank. The performance function used was based on converted energy across a range of standard sea states, but also included aspects related to economic performance, such as peak/average power, peak force, etc. This paper compares simulated and experimental results and, in particular, examines if the results obtained in a linear system simulation are borne out in reality. Overall, within the scope of the device tested, the range of sea states employed, and the performance metric used, the conclusion is that high-performance WEC controllers work well in practice, with good carry-over from simulation to experimentation. However, the availability of a good WEC mathematical model is deemed to be crucial

    Pjezorobotų trajektorijų valdymas nanopalydovų stabilizavimui

    Get PDF
    Rapid industrial advancement requires novel ideas, new scientific approaches and effective technologies that would ensure quality and precision. Application of piezoelectric actuators in robotics opens many possibilities to create systems with extreme precision and control. A very important step in the development of autonomous robots is the formation of motion trajectories. Classical interpolation methods used for formation of the trajectories are suitable only when robots have wheels, legs or other parts for motion transmission. Piezorobots that are analyzed in this dissertation have no additional components that create motion, only contact points with the static plane. Therefore, traditional motion formation methods are not suitable and a problem arises how to define motion trajectory of such device. The aim of this work is to create a trajectory control algorithm of multi-degrees-of-freedom piezorobot used for nanosatellite stabilization. In order to achieve the objective, the following tasks had to be solved: to analyze constructions of precise piezorobots, their operating principles and motion formation methods; to analyze stabilization problems of satellites and application of multi-degrees-of-freedom piezorobots for nanosatellite stabilization; to create piezorobots’ motion formation algorithms according to electrode excitation schemes, to perform an experimental research; to determine quantitative characteristics of the constructed piezorobots and their motion trajectories. The introduction describes the importance and novelty of this thesis, goals of this work, its practical value and defended statements. The first chapter analyses the principals of ultrasonic devices, gives a thorough review of constructions of ultrasonic devices with multi-degrees-of-freedom. The second chapter provides a review of satellite stabilization principles and how multi-degrees-of-freedom piezorobots can be applied for nanosatellite stabilization. Motion formation methods for ultrasonic devices with multi-degrees-of-freedom are presented. The third chapter presents the detailed analysis of different piezorobots. In the fourth chapter experimental results are provided. Trajectory planning of piezorobot is shown, results are compared to numerical calculations performed in the third chapter. The conclusions about applicability of piezorobots’ motion formation algorithms according to electrode excitation schemes are given. Seven articles focusing on the subject of the dissertation have been published, two presentations on the subject have been presented in conferences at international level. The research for the dissertation has been funded by the Lithuanian State Science and Studies Foundation: European Regional Development Fund, Project No. DOTSUT-234 and Research Council of Lithuania, Project No. MIP-084/2015.Dissertatio

    Investigation of end-stop motion constraint for a wave energy converter

    Get PDF
    This work develops a design protocol for wave energy converter motion constraint, endstop systems. It applies the protocol by first using a numerical hydrodynamic wave energy converter (WEC) model to obtain preliminary design loads. Following a definitive set of selection criteria, comprehensive design of a system of load-bearing, helical springs is produced. A preliminary design is modeled with finite element analysis, and compared to analytical results. New dynamical collision models are conceived for impact damping systems based on spring-mass and anisotropic surface friction phenomena, by applying the concept observed on the snake ventral skin. Friction and compressive forces are correlated by classical mechanics. Finally, dimensional analysis is applied to yield design parameterization to directly compare the micro and macro influences within these distinct models, resulting in new knowledge on the physical relationships within contact interfaces and a dimensionless mechanical impedance formulationEsta dissertação desenvolve um protocolo para projetos de sistemas de restrição de movimentos associado a um limitador de fim de curso em conversores de energia das ondas. Inicialmente, é aplicado um modelo numérico hidrodinâmico para análise de cargas em um conversor de energia das ondas (WEC). Em seguida, é apresentado um conjunto definitivo de critérios de seleção, para análise de um sistema de molas helicoidais compressivas, para atenuar as forças provocadas pelos movimentos extremos da boia. Um projeto preliminar é modelado com análises de elementos finitos e comparado com os resultados analíticos. Novos tipos de modelos dinâmicos são idealizados para amortecimento do impacto, baseados em molas e no fenômeno de atrito superficial anisotrópico, aplicando o conceito observado na pele ventral de cobras. As forças de atrito e compressivas foram correlacionadas por meio de princípios de mecânica clássica. Finalmente, uma análise adimensional é utilizada para gerar a parametrização do projeto, para comparar diretamente as micro e macro influências entre esses modelos distintos, resultando em novos conhecimentos sobre as relações físicas nas interfaces de contato e uma formulação adimensional de impedância mecânica

    Applied Measurement Systems

    Get PDF
    Measurement is a multidisciplinary experimental science. Measurement systems synergistically blend science, engineering and statistical methods to provide fundamental data for research, design and development, control of processes and operations, and facilitate safe and economic performance of systems. In recent years, measuring techniques have expanded rapidly and gained maturity, through extensive research activities and hardware advancements. With individual chapters authored by eminent professionals in their respective topics, Applied Measurement Systems attempts to provide a comprehensive presentation and in-depth guidance on some of the key applied and advanced topics in measurements for scientists, engineers and educators

    Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator

    Get PDF
    This paper presents a general analysis and a concrete example of the catastrophic case of a discontinuity-induced bifurcation in so-called Filippov nonsmooth dynam- ical systems. Such systems are characterised by discontinuous jumps in the right- hand-sides of differential equations across a phase space boundary and are often used as physical models of stick-slip motion and relay control. Sliding bifurcations of periodic orbits have recently been shown to underlie the onset of complex dy- namics including chaos. In contrast to previously analysed cases, in this work a periodic orbit is assumed to graze the boundary of a repelling sliding region, re- sulting in its abrupt destruction without any pre-cursive change in its stability or period. Necessary conditions for the occurrence of such catastrophic grazing-sliding bifurcations are derived. The analysis is illustrated in a piecewise-smooth model of a stripline resonator, where it can account for the abrupt onset of self-modulating current fluctuations. The resonator device is based around a ring of NbN containing a microbridge bottleneck, whose switching between normal and super conducting states can be modelled as discontinuous, and whose fast temperature versus slow current fluctuations are modeled by a slow-fast timescale separation in the dynam- ics. By approximating the slow component as Filippov sliding, explicit conditions are derived for catastrophic grazing-sliding bifurcations, which can be traced out as parameters vary. The results are shown to agree well with simulations of the slow- fast model and to offer a simple explanation of one of the key features of this novel experimental device
    corecore