306 research outputs found

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Robust contact force controller for slip prevention in a robotic gripper

    Get PDF
    Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used with a suitable slip sensor to regulate the contact force and prevent slip. Furthermore, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. In this paper, a fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The controller is based on a system model that is suitable for a wide class of robotic gripper configurations. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays), and the controller performance was reduced

    TIP trajectory tracking of flexible-joint manipulators

    Get PDF
    In most robot applications, the control of the manipulator’s end-effector along a specified desired trajectory is the main concern. In these applications, the end-effector (tip) of the manipulator is required to follow a given trajectory. Several methods have been so far proposed for the motion control of robot manipulators. However, most of these control methods ignore either joint friction or joint elasticity which can be caused by the transmission systems (e.g. belts and gearboxes). This study aims at development of a comprehensive control strategy for the tip-trajectory tracking of flexible-joint robot manipulators. While the proposed control strategy takes into account the effect of the friction and the elasticity in the joints, it also provides a highly accurate motion for the manipulator’s end-effector. During this study several approaches have been developed, implemented and verified experimentally/numerically for the tip trajectory tracking of robot manipulators. To compensate for the elasticity of the joints two methods have been proposed; they are a composite controller whose design is based on the singular perturbation theory and integral manifold concept, and a swarm controller which is a novel biologically-inspired controller and its concept is inspired by the movement of real biological systems such as flocks of birds and schools of fishes. To compensate for the friction in the joints two new approaches have been also introduced. They are a composite compensation strategy which consists of the non-linear dynamic LuGre model and a Proportional-Derivative (PD) compensator, and a novel friction compensation method whose design is based on the Work-Energy principle. Each of these proposed controllers has some advantages and drawbacks, and hence, depending on the application of the robot manipulator, they can be employed. For instance, the Work-Energy method has a simpler form than the LuGre-PD compensator and can be easily implemented in industrial applications, yet it provides less accuracy in friction compensation. In addition to design and develop new controllers for flexible-joint manipulators, another contribution of this work lays in the experimental verification of the proposed control strategies. For this purpose, experimental setups of a two-rigid-link flexible-joint and a single-rigid-link flexible-joint manipulators have been employed. The proposed controllers have been experimentally tested for different trajectories, velocities and several flexibilities of the joints. This ensures that the controllers are able to perform effectively at different trajectories and speeds. Besides developing control strategies for the flexible-joint manipulators, dynamic modeling and vibration suppression of flexible-link manipulators are other parts of this study. To derive dynamic equations for the flexible-link flexible-joint manipulators, the Lagrange method is used. The simulation results from Lagrange method are then confirmed by the finite element analysis (FEA) for different trajectories. To suppress the vibration of flexible manipulators during the manoeuvre, a collocated sensor-actuator is utilized, and a proportional control method is employed to adjust the voltage applied to the piezoelectric actuator. Based on the controllability of the states and using FEA, the optimum location of the piezoelectric along the manipulator is found. The effect of the controller’s gain and the delay between the input and output of the controller are also analyzed through a stability analysis

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    Sliding Mode Control of Robot Manipulators via Intelligent Approaches

    Get PDF

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore