48 research outputs found

    Stick-Breaking Policy Learning in Dec-POMDPs

    Get PDF
    Expectation maximization (EM) has recently been shown to be an efficient algorithm for learning finite-state controllers (FSCs) in large decentralized POMDPs (Dec-POMDPs). However, current methods use fixed-size FSCs and often converge to maxima that are far from optimal. This paper considers a variable-size FSC to represent the local policy of each agent. These variable-size FSCs are constructed using a stick-breaking prior, leading to a new framework called \emph{decentralized stick-breaking policy representation} (Dec-SBPR). This approach learns the controller parameters with a variational Bayesian algorithm without having to assume that the Dec-POMDP model is available. The performance of Dec-SBPR is demonstrated on several benchmark problems, showing that the algorithm scales to large problems while outperforming other state-of-the-art methods

    Learning for Multi-robot Cooperation in Partially Observable Stochastic Environments with Macro-actions

    Get PDF
    This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.Comment: Accepted to the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    Apprendre Ă  agir dans un Dec-POMDP

    Get PDF
    We address a long-standing open problem of reinforcement learning in decentralized partiallyobservable Markov decision processes. Previous attempts focussed on different forms of generalized policyiteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simplerto store and update than policies. We derive, under certain conditions, the first near-optimal cooperativemulti-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedymaximization by mixed-integer linear programming. Experiments show our approach can learn to actnear-optimally in many finite domains from the literature

    Learning to Act in Decentralized Partially Observable MDPs

    Get PDF
    International audienceWe address a long-standing open problem of reinforcement learning in decentralized partially observable Markov decision processes. Previous attempts focussed on different forms of generalized policy iteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simpler to store and update than policies. We derive, under certain conditions, the first near-optimal cooperative multi-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedy maximization by mixed-integer linear programming. Experiments show our approach can learn to act near-optimally in many finite domains from the literature

    Learning to Act in Continuous Dec-POMDPs

    Get PDF
    National audienceWe address a long-standing open problem of reinforcement learning in continuous decentralized partially observable Markov decision processes. Previous attempts focused on different forms of generalized policy iteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simpler to store and update than policies. We derive, under mild conditions, the first optimal cooperative multi-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedy maximization by mixed-integer linear programming. Experiments show our approach can learn to act optimally in many finite domains from the literature.Nous nous attaquons au problème d'apprentissage par renforcement dans le cadre des processus décisionnels de Markov partiellement observables et décentralisés. Les tentatives précédentes ont conduit à différentes variantes de la méthode généralisée d'itération de politiques, qui dans le meilleur des cas abouties à des optima locaux. Dans ce papier, nous nous restreindrons au plans, qui sont des formes plus simples que des politiques. Nous dériverons, sous certaines conditions, le premier algorithme optimal d'apprentissage par renforcement coopératif. Afin d'accroître le passage a l'échelle de cet algorithme, nous remplacerons l'opérateur glouton traditionnel par un programme linéaire en nombre entier. Les résultats expérimentaux montrent que notre méthode est capable d'apprendre de façon optimale dans plusieurs bancs de test de la littérature

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden
    corecore