467 research outputs found

    Stereoscopic visual saliency prediction based on stereo contrast and stereo focus

    Full text link
    © 2017, The Author(s). In this paper, we exploit two characteristics of stereoscopic vision: the pop-out effect and the comfort zone. We propose a visual saliency prediction model for stereoscopic images based on stereo contrast and stereo focus models. The stereo contrast model measures stereo saliency based on the color/depth contrast and the pop-out effect. The stereo focus model describes the degree of focus based on monocular focus and the comfort zone. After obtaining the values of the stereo contrast and stereo focus models in parallel, an enhancement based on clustering is performed on both values. We then apply a multi-scale fusion to form the respective maps of the two models. Last, we use a Bayesian integration scheme to integrate the two maps (the stereo contrast and stereo focus maps) into the stereo saliency map. Experimental results on two eye-tracking databases show that our proposed method outperforms the state-of-the-art saliency models

    Visual saliency prediction for stereoscopic image

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Saliency prediction is considered to be key to attentional processing. Attention improves learning and survival by compelling creatures to focus their limited cognitive resources and perceptive abilities on the most interesting region of the available sensory data. Computational models for saliency prediction are widely used in various fields of computer vision, such as object detection, scene recognition, and robot vision. In recent years, several comprehensive and well-performing models have been developed. However, these models are only suitable for 2D content. With the rapid development of 3D imaging technology, an increasing number of applications are emerging that rely on 3D images and video. In turn, demand for computational saliency models that can handle 3D content is growing. Compared to the significant progress in 2D saliency research, studies that consider depth factor as part of stereoscopic saliency analysis are rather limited. Thus, the role depth factor in stereoscopic saliency analysis is still relatively unexplored. The aim of this thesis is to fill this gap in the literature by exploring the role of depth factors in three aspects of stereoscopic saliency: how depth factors might be used to leverage stereoscopic saliency detection; how to build a stereoscopic saliency model based on the mechanisms of human stereoscopic vision; and how to implement a stereoscopic saliency model that can adjust to the particular aspect of human stereoscopic vision reflected in specific 3D content. To meet these three aims, this thesis includes three distinct computation models for stereoscopic saliency prediction based on the past and present outcomes of my research. The contributions of the thesis are as follows: Chapter 3 presents a preliminary saliency model for stereoscopic images. This model exploits depth information and treats the depth factor of an image as a weight to leverage saliency analysis. First, low-level features from the color and depth maps are extracted. Then, to extract the structural information from the depth map, the surrounding Boolean-based map is computed as a weight to enhance the low-level features. Lastly, a stereoscopic center prior enhancement based on the saliency probability distribution in the depth map is used to determine the final saliency. The model presented in Chapter 4 predicts stereoscopic visual saliency using stereo contrast and stereo focus. The stereo contrast submodel measures stereo saliency based on color, depth contrast, and the pop-out effect. The stereo focus submodel measures the degree of focus based on monocular vision and comfort zones. Multi-scale fusion is then used to generate a map for each of the submodels, and a Bayesian integration scheme combines both maps into a stereo saliency map. However, the stereoscopic saliency model presented in Chapter 4 does not explain all the phenomena in stereoscopic content. So, to improve the models robustness, Chapter 5 includes a computational model for stereoscopic 3D visual saliency with three submodels based on the three mechanisms of the human vision system: the pop-out effect, comfort zones, and the background effect. Each mechanism provides useful cues for stereoscopic saliency analysis depending on the nature of the stereoscopic content. Hence, the model in Chapter 5 incorporates a selection strategy to accurately determine which submodel should be used to process an image. The approach is implemented within a purpose-built, multi-feature analysis framework that assesses three features: surrounding region, color and depth contrast, and points of interest. All three models were verified through experiments with two eye-tracking databases. Each outperforms the state-of-the-art saliency models

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Stereoscopic image quality assessment method based on binocular combination saliency model

    Get PDF
    The objective quality assessment of stereoscopic images plays an important role in three-dimensional (3D) technologies. In this paper, we propose an effective method to evaluate the quality of stereoscopic images that are afflicted by symmetric distortions. The major technical contribution of this paper is that the binocular combination behaviours and human 3D visual saliency characteristics are both considered. In particular, a new 3D saliency map is developed, which not only greatly reduces the computational complexity by avoiding calculation of the depth information, but also assigns appropriate weights to the image contents. Experimental results indicate that the proposed metric not only significantly outperforms conventional 2D quality metrics, but also achieves higher performance than the existing 3D quality assessment models

    Quality index for stereoscopic images by jointly evaluating cyclopean amplitude and cyclopean phase

    Get PDF
    With widespread applications of three-dimensional (3-D) technology, measuring quality of experience for 3-D multimedia content plays an increasingly important role. In this paper, we propose a full reference stereo image quality assessment (SIQA) framework which focuses on the innovation of binocular visual properties and applications of low-level features. On one hand, based on the fact that human visual system understands an image mainly according to its low-level features, local phase and local amplitude extracted from phase congruency measurement are employed as primary features. Considering the less prominent performance of amplitude in IQA, visual saliency is applied into the modification on amplitude. On the other hand, by fully considering binocular rivalry phenomena, we create the cyclopean amplitude map and cyclopean phase map. With this method, both image features and binocular visual properties are mutually combined with each other. Meanwhile, a novel binocular modulation function in spatial domain is also adopted into the overall quality prediction of amplitude and phase. Extensive experiments demonstrate that the proposed framework achieves higher consistency with subjective tests than relevant SIQA metrics
    corecore