114 research outputs found

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Metrics for Stereoscopic Image Compression

    Get PDF
    Metrics for automatically predicting the compression settings for stereoscopic images, to minimize file size, while still maintaining an acceptable level of image quality are investigated. This research evaluates whether symmetric or asymmetric compression produces a better quality of stereoscopic image. Initially, how Peak Signal to Noise Ratio (PSNR) measures the quality of varyingly compressed stereoscopic image pairs was investigated. Two trials with human subjects, following the ITU-R BT.500-11 Double Stimulus Continuous Quality Scale (DSCQS) were undertaken to measure the quality of symmetric and asymmetric stereoscopic image compression. Computational models of the Human Visual System (HVS) were then investigated and a new stereoscopic image quality metric designed and implemented. The metric point matches regions of high spatial frequency between the left and right views of the stereo pair and accounts for HVS sensitivity to contrast and luminance changes in these regions. The PSNR results show that symmetric, as opposed to asymmetric stereo image compression, produces significantly better results. The human factors trial suggested that in general, symmetric compression of stereoscopic images should be used. The new metric, Stereo Band Limited Contrast, has been demonstrated as a better predictor of human image quality preference than PSNR and can be used to predict a perceptual threshold level for stereoscopic image compression. The threshold is the maximum compression that can be applied without the perceived image quality being altered. Overall, it is concluded that, symmetric, as opposed to asymmetric stereo image encoding, should be used for stereoscopic image compression. As PSNR measures of image quality are correctly criticized for correlating poorly with perceived visual quality, the new HVS based metric was developed. This metric produces a useful threshold to provide a practical starting point to decide the level of compression to use

    Visual Distortions in 360-degree Videos.

    Get PDF
    Omnidirectional (or 360°) images and videos are emergent signals being used in many areas, such as robotics and virtual/augmented reality. In particular, for virtual reality applications, they allow an immersive experience in which the user can interactively navigate through a scene with three degrees of freedom, wearing a head-mounted display. Current approaches for capturing, processing, delivering, and displaying 360° content, however, present many open technical challenges and introduce several types of distortions in the visual signal. Some of the distortions are specific to the nature of 360° images and often differ from those encountered in classical visual communication frameworks. This paper provides a first comprehensive review of the most common visual distortions that alter 360° signals going through the different processing elements of the visual communication pipeline. While their impact on viewers' visual perception and the immersive experience at large is still unknown-thus, it is an open research topic-this review serves the purpose of proposing a taxonomy of the visual distortions that can be encountered in 360° signals. Their underlying causes in the end-to-end 360° content distribution pipeline are identified. This taxonomy is essential as a basis for comparing different processing techniques, such as visual enhancement, encoding, and streaming strategies, and allowing the effective design of new algorithms and applications. It is also a useful resource for the design of psycho-visual studies aiming to characterize human perception of 360° content in interactive and immersive applications

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    Web-based Stereoscopic Collaboration for Medical Visualization

    Get PDF
    Medizinische Volumenvisualisierung ist ein wertvolles Werkzeug zur Betrachtung von Volumen- daten in der medizinischen Praxis und Lehre. Eine interaktive, stereoskopische und kollaborative Darstellung in Echtzeit ist notwendig, um die Daten vollständig und im Detail verstehen zu können. Solche Visualisierung von hochauflösenden Daten ist jedoch wegen hoher Hardware- Anforderungen fast nur an speziellen Visualisierungssystemen möglich. Remote-Visualisierung wird verwendet, um solche Visualisierung peripher nutzen zu können. Dies benötigt jedoch fast immer komplexe Software-Deployments, wodurch eine universelle ad-hoc Nutzbarkeit erschwert wird. Aus diesem Sachverhalt ergibt sich folgende Hypothese: Ein hoch performantes Remote- Visualisierungssystem, welches für Stereoskopie und einfache Benutzbarkeit spezialisiert ist, kann für interaktive, stereoskopische und kollaborative medizinische Volumenvisualisierung genutzt werden. Die neueste Literatur über Remote-Visualisierung beschreibt Anwendungen, welche nur reine Webbrowser benötigen. Allerdings wird bei diesen kein besonderer Schwerpunkt auf die perfor- mante Nutzbarkeit von jedem Teilnehmer gesetzt, noch die notwendige Funktion bereitgestellt, um mehrere stereoskopische Präsentationssysteme zu bedienen. Durch die Bekanntheit von Web- browsern, deren einfach Nutzbarkeit und weite Verbreitung hat sich folgende spezifische Frage ergeben: Können wir ein System entwickeln, welches alle Aspekte unterstützt, aber nur einen reinen Webbrowser ohne zusätzliche Software als Client benötigt? Ein Proof of Concept wurde durchgeführt um die Hypothese zu verifizieren. Dazu gehörte eine Prototyp-Entwicklung, deren praktische Anwendung, deren Performanzmessung und -vergleich. Der resultierende Prototyp (CoWebViz) ist eines der ersten Webbrowser basierten Systeme, welches flüssige und interaktive Remote-Visualisierung in Realzeit und ohne zusätzliche Soft- ware ermöglicht. Tests und Vergleiche zeigen, dass der Ansatz eine bessere Performanz hat als andere ähnliche getestete Systeme. Die simultane Nutzung verschiedener stereoskopischer Präsen- tationssysteme mit so einem einfachen Remote-Visualisierungssystem ist zur Zeit einzigartig. Die Nutzung für die normalerweise sehr ressourcen-intensive stereoskopische und kollaborative Anatomieausbildung, gemeinsam mit interkontinentalen Teilnehmern, zeigt die Machbarkeit und den vereinfachenden Charakter des Ansatzes. Die Machbarkeit des Ansatzes wurde auch durch die erfolgreiche Nutzung für andere Anwendungsfälle gezeigt, wie z.B. im Grid-computing und in der Chirurgie

    Characterization of Energy and Performance Bottlenecks in an Omni-directional Camera System

    Get PDF
    abstract: Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power. We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.Dissertation/ThesisPrototypeMasters Thesis Electrical Engineering 201

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Visual Distortions in 360-degree Videos

    Get PDF
    Omnidirectional (or 360-degree) images and videos are emergent signals in many areas such as robotics and virtual/augmented reality. In particular, for virtual reality, they allow an immersive experience in which the user is provided with a 360-degree field of view and can navigate throughout a scene, e.g., through the use of Head Mounted Displays. Since it represents the full 360-degree field of view from one point of the scene, omnidirectional content is naturally represented as spherical visual signals. Current approaches for capturing, processing, delivering, and displaying 360-degree content, however, present many open technical challenges and introduce several types of distortions in these visual signals. Some of the distortions are specific to the nature of 360-degree images, and often different from those encountered in the classical image communication framework. This paper provides a first comprehensive review of the most common visual distortions that alter 360-degree signals undergoing state of the art processing in common applications. While their impact on viewers' visual perception and on the immersive experience at large is still unknown ---thus, it stays an open research topic--- this review serves the purpose of identifying the main causes of visual distortions in the end-to-end 360-degree content distribution pipeline. It is essential as a basis for benchmarking different processing techniques, allowing the effective design of new algorithms and applications. It is also necessary to the deployment of proper psychovisual studies to characterise the human perception of these new images in interactive and immersive applications
    corecore