2,368 research outputs found

    Neural Stereoscopic Image Style Transfer

    Full text link
    Neural style transfer is an emerging technique which is able to endow daily-life images with attractive artistic styles. Previous work has succeeded in applying convolutional neural networks (CNNs) to style transfer for monocular images or videos. However, style transfer for stereoscopic images is still a missing piece. Different from processing a monocular image, the two views of a stylized stereoscopic pair are required to be consistent to provide observers a comfortable visual experience. In this paper, we propose a novel dual path network for view-consistent style transfer on stereoscopic images. While each view of the stereoscopic pair is processed in an individual path, a novel feature aggregation strategy is proposed to effectively share information between the two paths. Besides a traditional perceptual loss being used for controlling the style transfer quality in each view, a multi-layer view loss is leveraged to enforce the network to coordinate the learning of both the paths to generate view-consistent stylized results. Extensive experiments show that, compared against previous methods, our proposed model can produce stylized stereoscopic images which achieve decent view consistency

    GPU-Accelerated Mobile Multi-view Style Transfer

    Full text link
    An estimated 60% of smartphones sold in 2018 were equipped with multiple rear cameras, enabling a wide variety of 3D-enabled applications such as 3D Photos. The success of 3D Photo platforms (Facebook 3D Photo, Holopix, etc) depend on a steady influx of user generated content. These platforms must provide simple image manipulation tools to facilitate content creation, akin to traditional photo platforms. Artistic neural style transfer, propelled by recent advancements in GPU technology, is one such tool for enhancing traditional photos. However, naively extrapolating single-view neural style transfer to the multi-view scenario produces visually inconsistent results and is prohibitively slow on mobile devices. We present a GPU-accelerated multi-view style transfer pipeline which enforces style consistency between views with on-demand performance on mobile platforms. Our pipeline is modular and creates high quality depth and parallax effects from a stereoscopic image pair.Comment: 6 pages, 5 figure

    Neural Style Transfer: A Review

    Full text link
    The seminal work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style. This process of using CNNs to render a content image in different styles is referred to as Neural Style Transfer (NST). Since then, NST has become a trending topic both in academic literature and industrial applications. It is receiving increasing attention and a variety of approaches are proposed to either improve or extend the original NST algorithm. In this paper, we aim to provide a comprehensive overview of the current progress towards NST. We first propose a taxonomy of current algorithms in the field of NST. Then, we present several evaluation methods and compare different NST algorithms both qualitatively and quantitatively. The review concludes with a discussion of various applications of NST and open problems for future research. A list of papers discussed in this review, corresponding codes, pre-trained models and more comparison results are publicly available at https://github.com/ycjing/Neural-Style-Transfer-Papers.Comment: Project page: https://github.com/ycjing/Neural-Style-Transfer-Paper

    Learning Selfie-Friendly Abstraction from Artistic Style Images

    Full text link
    Artistic style transfer can be thought as a process to generate different versions of abstraction of the original image. However, most of the artistic style transfer operators are not optimized for human faces thus mainly suffers from two undesirable features when applying them to selfies. First, the edges of human faces may unpleasantly deviate from the ones in the original image. Second, the skin color is far from faithful to the original one which is usually problematic in producing quality selfies. In this paper, we take a different approach and formulate this abstraction process as a gradient domain learning problem. We aim to learn a type of abstraction which not only achieves the specified artistic style but also circumvents the two aforementioned drawbacks thus highly applicable to selfie photography. We also show that our method can be directly generalized to videos with high inter-frame consistency. Our method is also robust to non-selfie images, and the generalization to various kinds of real-life scenes is discussed. We will make our code publicly available

    DAVANet: Stereo Deblurring with View Aggregation

    Full text link
    Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles. However, they also suffer from blurry images in dynamic scenes which leads to visual discomfort and hampers further image processing. Previous works have succeeded in monocular deblurring, yet there are few studies on deblurring for stereoscopic images. By exploiting the two-view nature of stereo images, we propose a novel stereo image deblurring network with Depth Awareness and View Aggregation, named DAVANet. In our proposed network, 3D scene cues from the depth and varying information from two views are incorporated, which help to remove complex spatially-varying blur in dynamic scenes. Specifically, with our proposed fusion network, we integrate the bidirectional disparities estimation and deblurring into a unified framework. Moreover, we present a large-scale multi-scene dataset for stereo deblurring, containing 20,637 blurry-sharp stereo image pairs from 135 diverse sequences and their corresponding bidirectional disparities. The experimental results on our dataset demonstrate that DAVANet outperforms state-of-the-art methods in terms of accuracy, speed, and model size.Comment: CVPR 2019 (Oral

    Style transfer-based image synthesis as an efficient regularization technique in deep learning

    Full text link
    These days deep learning is the fastest-growing area in the field of Machine Learning. Convolutional Neural Networks are currently the main tool used for image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this paper, we have focused on the most frequently mentioned problem in the field of machine learning, that is relatively poor generalization abilities. Partial remedies for this are regularization techniques e.g. dropout, batch normalization, weight decay, transfer learning, early stopping and data augmentation. In this paper, we have focused on data augmentation. We propose to use a method based on a neural style transfer, which allows generating new unlabeled images of a high perceptual quality that combine the content of a base image with the appearance of another one. In a proposed approach, the newly created images are described with pseudo-labels, and then used as a training dataset. Real, labeled images are divided into the validation and test set. We validated the proposed method on a challenging skin lesion classification case study. Four representative neural architectures are examined. Obtained results show the strong potential of the proposed approach.Comment: 6 pages, 4 figures, accepted to the 24th International Conference on Methods and Models in Automation and Robotics (MMAR 2019

    Multimodal Style Transfer via Graph Cuts

    Full text link
    An assumption widely used in recent neural style transfer methods is that image styles can be described by global statics of deep features like Gram or covariance matrices. Alternative approaches have represented styles by decomposing them into local pixel or neural patches. Despite the recent progress, most existing methods treat the semantic patterns of style image uniformly, resulting unpleasing results on complex styles. In this paper, we introduce a more flexible and general universal style transfer technique: multimodal style transfer (MST). MST explicitly considers the matching of semantic patterns in content and style images. Specifically, the style image features are clustered into sub-style components, which are matched with local content features under a graph cut formulation. A reconstruction network is trained to transfer each sub-style and render the final stylized result. We also generalize MST to improve some existing methods. Extensive experiments demonstrate the superior effectiveness, robustness, and flexibility of MST.Comment: Accepted to ICCV 2019. Typos in Eqs. (11) and (12) have been fixed in arXiv V2 and this version (V6). Code: https://github.com/yulunzhang/MS

    A Novel Monocular Disparity Estimation Network with Domain Transformation and Ambiguity Learning

    Full text link
    Convolutional neural networks (CNN) have shown state-of-the-art results for low-level computer vision problems such as stereo and monocular disparity estimations, but still, have much room to further improve their performance in terms of accuracy, numbers of parameters, etc. Recent works have uncovered the advantages of using an unsupervised scheme to train CNN's to estimate monocular disparity, where only the relatively-easy-to-obtain stereo images are needed for training. We propose a novel encoder-decoder architecture that outperforms previous unsupervised monocular depth estimation networks by (i) taking into account ambiguities, (ii) efficient fusion between encoder and decoder features with rectangular convolutions and (iii) domain transformations between encoder and decoder. Our architecture outperforms the Monodepth baseline in all metrics, even with a considerable reduction of parameters. Furthermore, our architecture is capable of estimating a full disparity map in a single forward pass, whereas the baseline needs two passes. We perform extensive experiments to verify the effectiveness of our method on the KITTI dataset

    ReCoNet: Real-time Coherent Video Style Transfer Network

    Full text link
    Image style transfer models based on convolutional neural networks usually suffer from high temporal inconsistency when applied to videos. Some video style transfer models have been proposed to improve temporal consistency, yet they fail to guarantee fast processing speed, nice perceptual style quality and high temporal consistency at the same time. In this paper, we propose a novel real-time video style transfer model, ReCoNet, which can generate temporally coherent style transfer videos while maintaining favorable perceptual styles. A novel luminance warping constraint is added to the temporal loss at the output level to capture luminance changes between consecutive frames and increase stylization stability under illumination effects. We also propose a novel feature-map-level temporal loss to further enhance temporal consistency on traceable objects. Experimental results indicate that our model exhibits outstanding performance both qualitatively and quantitatively.Comment: 16 pages, 7 figures. For supplementary material, see https://www.dropbox.com/s/go6f7uopjjsala7/ReCoNet%20Supplementary%20Material.pdf?dl=

    Exploring Computation-Communication Tradeoffs in Camera Systems

    Full text link
    Cameras are the defacto sensor. The growing demand for real-time and low-power computer vision, coupled with trends towards high-efficiency heterogeneous systems, has given rise to a wide range of image processing acceleration techniques at the camera node and in the cloud. In this paper, we characterize two novel camera systems that use acceleration techniques to push the extremes of energy and performance scaling, and explore the computation-communication tradeoffs in their design. The first case study targets a camera system designed to detect and authenticate individual faces, running solely on energy harvested from RFID readers. We design a multi-accelerator SoC design operating in the sub-mW range, and evaluate it with real-world workloads to show performance and energy efficiency improvements over a general purpose microprocessor. The second camera system supports a 16-camera rig processing over 32 Gb/s of data to produce real-time 3D-360 degree virtual reality video. We design a multi-FPGA processing pipeline that outperforms CPU and GPU configurations by up to 10x in computation time, producing panoramic stereo video directly from the camera rig at 30 frames per second. We find that an early data reduction step, either before complex processing or offloading, is the most critical optimization for in-camera systems
    corecore