82 research outputs found

    Bio-Inspired Stereo Vision Calibration for Dynamic Vision Sensors

    Get PDF
    Many advances have been made in the eld of computer vision. Several recent research trends have focused on mimicking human vision by using a stereo vision system. In multi-camera systems, a calibration process is usually implemented to improve the results accuracy. However, these systems generate a large amount of data to be processed; therefore, a powerful computer is required and, in many cases, this cannot be done in real time. Neuromorphic Engineering attempts to create bio-inspired systems that mimic the information processing that takes place in the human brain. This information is encoded using pulses (or spikes) and the generated systems are much simpler (in computational operations and resources), which allows them to perform similar tasks with much lower power consumption, thus these processes can be developed over specialized hardware with real-time processing. In this work, a bio-inspired stereovision system is presented, where a calibration mechanism for this system is implemented and evaluated using several tests. The result is a novel calibration technique for a neuromorphic stereo vision system, implemented over specialized hardware (FPGA - Field-Programmable Gate Array), which allows obtaining reduced latencies on hardware implementation for stand-alone systems, and working in real time.Ministerio de Economía y Competitividad TEC2016-77785-PMinisterio de Economía y Competitividad TIN2016-80644-

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    Get PDF
    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction.ERANET PRI-PIMCHI- 2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01, TEC2012-37868- C04-01Junta de Andalucía TIC-609

    Improved Contrast Sensitivity DVS and its Application to Event-Driven Stereo Vision

    Get PDF
    This paper presents a new DVS sensor with one order of magnitude improved contrast sensitivity over previous reported DVSs. This sensor has been applied to a bio-inspired event-based binocular system that performs 3D event-driven reconstruction of a scene. Events from two DVS sensors are matched by using precise timing information of their ocurrence. To improve matching reliability, satisfaction of epipolar geometry constraint is required, and simultaneously available information on the orientation is used as an additional matching constraint.Ministerio de Economía y Competitividad PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Junta de Andalucía TIC-609

    Event-driven stereo vision with orientation filters

    Get PDF
    The recently developed Dynamic Vision Sensors (DVS) sense dynamic visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, applying the matching algorithm to the events generated by the Gabor filters and not to those produced by the DVS. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction.European Union PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Ministerio de Economía y Competitividad TEC2012-37868-C04-01Junta de Andalucía TIC-609

    Real-time motor rotation frequency detection with event-based visual and spike-based auditory AER sensory integration for FPGA

    Get PDF
    Multisensory integration is commonly used in various robotic areas to collect more environmental information using different and complementary types of sensors. Neuromorphic engineers mimics biological systems behavior to improve systems performance in solving engineering problems with low power consumption. This work presents a neuromorphic sensory integration scenario for measuring the rotation frequency of a motor using an AER DVS128 retina chip (Dynamic Vision Sensor) and a stereo auditory system on a FPGA completely event-based. Both of them transmit information with Address-Event-Representation (AER). This integration system uses a new AER monitor hardware interface, based on a Spartan-6 FPGA that allows two operational modes: real-time (up to 5 Mevps through USB2.0) and data logger mode (up to 20Mevps for 33.5Mev stored in onboard DDR RAM). The sensory integration allows reducing prediction error of the rotation speed of the motor since audio processing offers a concrete range of rpm, while DVS can be much more accurate.Ministerio de Economía y Competitividad TEC2012-37868-C04-02/0

    Event-based neuromorphic stereo vision

    Full text link

    Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms

    Get PDF
    Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint—time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision
    corecore