180 research outputs found

    TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation

    Full text link
    Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    System of Terrain Analysis, Energy Estimation and Path Planning for Planetary Exploration by Robot Teams

    Get PDF
    NASA’s long term plans involve a return to manned moon missions, and eventually sending humans to mars. The focus of this project is the use of autonomous mobile robotics to enhance these endeavors. This research details the creation of a system of terrain classification, energy of traversal estimation and low cost path planning for teams of inexpensive and potentially expendable robots. The first stage of this project was the creation of a model which estimates the energy requirements of the traversal of varying terrain types for a six wheel rocker-bogie rover. The wheel/soil interaction model uses Shibly’s modified Bekker equations and incorporates a new simplified rocker-bogie model for estimating wheel loads. In all but a single trial the relative energy requirements for each soil type were correctly predicted by the model. A path planner for complete coverage intended to minimize energy consumption was designed and tested. It accepts as input terrain maps detailing the energy consumption required to move to each adjacent location. Exploration is performed via a cost function which determines the robot’s next move. This system was successfully tested for multiple robots by means of a shared exploration map. At peak efficiency, the energy consumed by our path planner was only 56% that used by the best case back and forth coverage pattern. After performing a sensitivity analysis of Shibly’s equations to determine which soil parameters most affected energy consumption, a neural network terrain classifier was designed and tested. The terrain classifier defines all traversable terrain as one of three soil types and then assigns an assumed set of soil parameters. The classifier performed well over all, but had some difficulty distinguishing large rocks from sand. This work presents a system which successfully classifies terrain imagery into one of three soil types, assesses the energy requirements of terrain traversal for these soil types and plans efficient paths of complete coverage for the imaged area. While there are further efforts that can be made in all areas, the work achieves its stated goals

    Vision and Learning for Deliberative Monocular Cluttered Flight

    Full text link
    Cameras provide a rich source of information while being passive, cheap and lightweight for small and medium Unmanned Aerial Vehicles (UAVs). In this work we present the first implementation of receding horizon control, which is widely used in ground vehicles, with monocular vision as the only sensing mode for autonomous UAV flight in dense clutter. We make it feasible on UAVs via a number of contributions: novel coupling of perception and control via relevant and diverse, multiple interpretations of the scene around the robot, leveraging recent advances in machine learning to showcase anytime budgeted cost-sensitive feature selection, and fast non-linear regression for monocular depth prediction. We empirically demonstrate the efficacy of our novel pipeline via real world experiments of more than 2 kms through dense trees with a quadrotor built from off-the-shelf parts. Moreover our pipeline is designed to combine information from other modalities like stereo and lidar as well if available

    Traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data

    Get PDF
    Scene perception and traversability analysis are real challenges for autonomous driving systems. In the context of off-road autonomy, there are additional challenges due to the unstructured environments and the existence of various vegetation types. It is necessary for the Autonomous Ground Vehicles (AGVs) to be able to identify obstacles and load-bearing surfaces in the terrain to ensure a safe navigation (McDaniel et al. 2012). The presence of vegetation in off-road autonomy applications presents unique challenges for scene understanding: 1) understory vegetation makes it difficult to detect obstacles or to identify load-bearing surfaces; and 2) trees are usually regarded as obstacles even though only trunks of the trees pose collision risk in navigation. The overarching goal of this dissertation was to study traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data. More specifically, to address the aforementioned challenges, this dissertation studied the impacts of the understory vegetation density on the solid obstacle detection performance of the off-road autonomous systems. By leveraging a physics-based autonomous driving simulator, a classification-based machine learning framework was proposed for obstacle detection based on point cloud data captured by LIDAR. Features were extracted based on a cumulative approach meaning that information related to each feature was updated at each timeframe when new data was collected by LIDAR. It was concluded that the increase in the density of understory vegetation adversely affected the classification performance in correctly detecting solid obstacles. Additionally, a regression-based framework was proposed for estimating the understory vegetation density for safe path planning purposes according to which the traversabilty risk level was regarded as a function of estimated density. Thus, the denser the predicted density of an area, the higher the risk of collision if the AGV traversed through that area. Finally, for the trees in the terrain, the dissertation investigated statistical features that can be used in machine learning algorithms to differentiate trees from solid obstacles in the context of forested off-road scenes. Using the proposed extracted features, the classification algorithm was able to generate high precision results for differentiating trees from solid obstacles. Such differentiation can result in more optimized path planning in off-road applications

    Watch Your Step! Terrain Traversability for Robot Control

    Get PDF
    Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly going from structured and completely known environments towards uncertain and unknown terrain, the surface assessment becomes an essential requirement. As a result, future mobile robots cannot neglect the evaluation of terrain’s structure, according to their driving capabilities. With the objective of filling this gap, the focus of this study was laid on terrain analysis methods, which can be used for robot control with particular reference to autonomous vehicles and mobile robots. Giving an overview of theory related to this topic, the investigation not only covers hardware, such as visual sensors or laser scanners, but also space descriptions, such as digital elevation models and point descriptors, introducing new aspects and characterization of terrain assessment. During the discussion, a wide number of examples and methodologies are exposed according to different tools and sensors, including the description of a recent method of terrain assessment using normal vectors analysis. Indeed, normal vectors has demonstrated great potentialities in the field of terrain irregularity assessment in both on‐road and off‐road environments

    Assessment of simulated and real-world autonomy performance with small-scale unmanned ground vehicles

    Get PDF
    Off-road autonomy is a challenging topic that requires robust systems to both understand and navigate complex environments. While on-road autonomy has seen a major expansion in recent years in the consumer space, off-road systems are mostly relegated to niche applications. However, these applications can provide safety and navigation to dangerous areas that are the most suited for autonomy tasks. Traversability analysis is at the core of many of the algorithms employed in these topics. In this thesis, a Clearpath Robotics Jackal vehicle is equipped with a 3D Ouster laser scanner to define and traverse off-road environments. The Mississippi State University Autonomous Vehicle Simulator (MAVS) and the Navigating All Terrains Using Robotic Exploration (NATURE) autonomy stack are used in conjunction with the small-scale vehicle platform to traverse uneven terrain and collect data. Additionally, the NATURE stack is used as a point of comparison between a MAVS simulated and physical Clearpath Robotics Jackal vehicle in testing

    Haptic robot-environment interaction for self-supervised learning in ground mobility

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de ComputadoresThis dissertation presents a system for haptic interaction and self-supervised learning mechanisms to ascertain navigation affordances from depth cues. A simple pan-tilt telescopic arm and a structured light sensor, both fitted to the robot’s body frame, provide the required haptic and depth sensory feedback. The system aims at incrementally develop the ability to assess the cost of navigating in natural environments. For this purpose the robot learns a mapping between the appearance of objects, given sensory data provided by the sensor, and their bendability, perceived by the pan-tilt telescopic arm. The object descriptor, representing the object in memory and used for comparisons with other objects, is rich for a robust comparison and simple enough to allow for fast computations. The output of the memory learning mechanism allied with the haptic interaction point evaluation prioritize interaction points to increase the confidence on the interaction and correctly identifying obstacles, reducing the risk of the robot getting stuck or damaged. If the system concludes that the object is traversable, the environment change detection system allows the robot to overcome it. A set of field trials show the ability of the robot to progressively learn which elements of environment are traversable

    Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    Get PDF
    Perception of the surrounding environment is an essential tool for intelligent navigation in any autonomous vehicle. In the context of Mars exploration, there is a strong motivation to enhance the perception of the rovers beyond geometry-based obstacle avoidance, so as to be able to predict potential interactions with the terrain. In this thesis we propose to remotely predict the amount of slip, which reflects the mobility of the vehicle on future terrain. The method is based on learning from experience and uses visual information from stereo imagery as input. We test the algorithm on several robot platforms and in different terrains. We also demonstrate its usefulness in an integrated system, onboard a Mars prototype rover in the JPL Mars Yard. Another desirable capability for an autonomous robot is to be able to learn about its interactions with the environment in a fully automatic fashion. We propose an algorithm which uses the robot's sensors as supervision for vision-based learning of different terrain types. This algorithm can work with noisy and ambiguous signals provided from onboard sensors. To be able to cope with rich, high-dimensional visual representations we propose a novel, nonlinear dimensionality reduction technique which exploits automatic supervision. The method is the first to consider supervised nonlinear dimensionality reduction in a probabilistic framework using supervision which can be noisy or ambiguous. Finally, we consider the problem of learning to recognize different terrains, which addresses the time constraints of an onboard autonomous system. We propose a method which automatically learns a variable-length feature representation depending on the complexity of the classification task. The proposed approach achieves a good trade-off between decrease in computational time and recognition performance.</p

    Multitask Learning for Scalable and Dense Multilayer Bayesian Map Inference

    Full text link
    This article presents a novel and flexible multitask multilayer Bayesian mapping framework with readily extendable attribute layers. The proposed framework goes beyond modern metric-semantic maps to provide even richer environmental information for robots in a single mapping formalism while exploiting intralayer and interlayer correlations. It removes the need for a robot to access and process information from many separate maps when performing a complex task, advancing the way robots interact with their environments. To this end, we design a multitask deep neural network with attention mechanisms as our front-end to provide heterogeneous observations for multiple map layers simultaneously. Our back-end runs a scalable closed-form Bayesian inference with only logarithmic time complexity. We apply the framework to build a dense robotic map including metric-semantic occupancy and traversability layers. Traversability ground truth labels are automatically generated from exteroceptive sensory data in a self-supervised manner. We present extensive experimental results on publicly available datasets and data collected by a 3D bipedal robot platform and show reliable mapping performance in different environments. Finally, we also discuss how the current framework can be extended to incorporate more information such as friction, signal strength, temperature, and physical quantity concentration using Gaussian map layers. The software for reproducing the presented results or running on customized data is made publicly available
    corecore