2,604 research outputs found

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    Outdoor navigation of mobile robots

    Get PDF
    AGVs in the manufacturing industry currently constitute the largest application area for mobile robots. Other applications have been gradually emerging, including various transporting tasks in demanding environments, such as mines or harbours. Most of the new potential applications require a free-ranging navigation system, which means that the path of a robot is no longer bound to follow a buried inductive cable. Moreover, changing the route of a robot or taking a new working area into use must be as effective as possible. These requirements set new challenges for the navigation systems of mobile robots. One of the basic methods of building a free ranging navigation system is to combine dead reckoning navigation with the detection of beacons at known locations. This approach is the backbone of the navigation systems in this study. The study describes research and development work in the area of mobile robotics including the applications in forestry, agriculture, mining, and transportation in a factory yard. The focus is on describing navigation sensors and methods for position and heading estimation by fusing dead reckoning and beacon detection information. A Kalman filter is typically used here for sensor fusion. Both cases of using either artificial or natural beacons have been covered. Artificial beacons used in the research and development projects include specially designed flat objects to be detected using a camera as the detection sensor, GPS satellite positioning system, and passive transponders buried in the ground along the route of a robot. The walls in a mine tunnel have been used as natural beacons. In this case, special attention has been paid to map building and using the map for positioning. The main contribution of the study is in describing the structure of a working navigation system, including positioning and position control. The navigation system for mining application, in particular, contains some unique features that provide an easy-to-use procedure for taking new production areas into use and making it possible to drive a heavy mining machine autonomously at speed comparable to an experienced human driver.reviewe

    Dynamic 3D-Vision

    Get PDF

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore