232 research outputs found

    Catalyst

    Get PDF
    My thesis exhibition consists of a series of mixed media paintings and sculpture derived through experimentation with materials. I have appropriated alchemical processes to describe and generate the abstract landscape. The work emphasizes process and chemical reactions and is comprised of fluid fortuitous marks, free of conscious control, that work in tandem to create deep space that invites immersion and tempts interaction. The viewer is both an integral component of the piece and a foreign sightseeing entity, removed from the known world and placed in a bizarre offshoot

    GPS-MIV: The General Purpose System for Multi-display Interactive Visualization

    Get PDF
    The new age of information has created opportunities for inventions like the internet. These inventions allow us access to tremendous quantities of data. But, with the increase in information there is need to make sense of such vast quantities of information by manipulating that information to reveal hidden patterns to aid in making sense of it. Data visualization systems provide the tools to reveal patterns and filter information, aiding the processes of insight and decision making. The purpose of this thesis is to develop and test a data visualization system, The General Purpose System for Multi-display Interactive Visualization (GPS-MIV). GPS-MIV is a software system allowing the user to visualize data graphically and interact with it. At the core of the system is a graphics system that displays different computer generated scenes from multiple perspectives and with multiple views. Additionally, GSP-MIV provides interaction for the user to explore the scene

    Catalyst

    Get PDF
    My thesis exhibition consists of a series of mixed media paintings and sculpture derived through experimentation with materials. I have appropriated alchemical processes to describe and generate the abstract landscape. The work emphasizes process and chemical reactions and is comprised of fluid fortuitous marks, free of conscious control, that work in tandem to create deep space that invites immersion and tempts interaction. The viewer is both an integral component of the piece and a foreign sightseeing entity, removed from the known world and placed in a bizarre offshoot

    The world is what you make it: an application of virtual reality to the tourism industry

    Get PDF
    The tourism industry is a highly information intensive-industiy. In few other areas of activity are the generation, gathering, processing, application and communication of information as important for dayto- day operations as they are for the tourism industry (Buhalis 1994). Traditional sources of tourism information, images, text, sound, animation and video, provide potential tourists with short and often rather limited glimpses of tourism destinations which may be inadequate to enable them to make informed decisions (Cheong 1995). In addition, these sources of tourist information provide only a passive experience as they often possess little involvement on the part of the potential tourist. Virtual Reality (VR), on the other hand, enables potential tourists to interact with and experience each tourist destination in high detail and provides them with enough information to make a well-informed tourist decision. When considering its application within the tourism industry, VR will offer the ability not only to view a destination, but also, to participate in the activities offered at the destination. Through VR the tourist advances from being a passive observer to being an active participant (Williams & Hobson 1994). This thesis addresses issues associated with the design and evaluation of a VR application to the tourism industry that provides users with all the traditional types of tourist information along with allowing them to experience a multi-participant, realistic, interactive and real-time walkthrough of real-life tourist destinations. In order to develop these walkthroughs, the basic concepts of VR had first to be analysed. This was achieved by gaining hands-on experience of the different types of VR hardware and software available in conjunction with an in-depth literature review. Following the completion of this analysis, an overview of the tourism industry was developed. This overview identified certain properties of the tourism product that lend themselves readily to the application of VR Once this was completed the final stage of the research was concerned with the development of the walkthroughs and the elicitation of knowledge from the development of these walkthroughs. There were many conclusions uncovered by this research but the most important was that VR can indeed be applied successfully to the tourism industry. The main areas of application will be in the areas of tourism policy and planning and the marketing of the tourism product. Another conclusion that was drawn from this research was that VR applications can help to generate realistic impressions and expectations of what can be experienced at a tourism location. The final outstanding conclusion drawn from this research was that potential tourists viewed the VR application as a decision making tool that increases their desire to actually visit a tourist location and not as a tourism substitute

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Design Architecture in Virtual Reality

    Get PDF
    Architectural representation has newly been introduced to Virtual Reality (VR) technology, which provides architects with a medium to showcase unbuilt designs as immersive experiences. Designers can use specialized VR headsets and equipment to provide a client or member of their design team with the illusion of being within the digital space they are presented on screen. This mode of representation is unprecedented to the architectural field, as VR is able to create the sensation of being encompassed in an environment at full scale, potentially eliciting a visceral response from users, similar to the response physical architecture produces. While this premise makes the technology highly applicable towards the architectural practice, it might not be the most practical medium to communicate design intent. Since VR’s conception, the primary software to facilitate VR content creation has been geared towards programmers rather than architects. The practicality of integrating virtual reality within a traditional architectural design workflow is often overlooked in the discussion surrounding the use of VR to represent design projects. This thesis aims to investigate the practicality of VR as part of a design methodology, through the assessment of efficacy and efficiency, while studying the integration of VR into the architectural workflow. This is done by examining the creation of stereoscopic renderings, walkthrough animations, interactive iterations and quick demonstrations as explorations of common architectural visualization techniques using VR. Experimentation with each visualization method is supplemented with a documentation of the VR scene creation process across an approximated time frame to measure efficiency, and a set of evaluation parameters to measure efficacy. Experiments either yielded the creation of a successful experience that exceeded the time constraints a common fast-paced architectural firm might allow for the task (low efficiency) or created a limiting experience where interaction and functionality were not executed to meet the required industry standards (low efficacy). This resultant impracticality based on time and effort, demonstrates that a successfully immersive VR simulation is not produced simplistically in VR; requiring a great deal of thought to be placed into design intent. Although impractical, documentation suggests that the user experience of creating VR content might be able to engage new ways of design thinking and impact the way architects conceptualize space, encouraging further research

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Dense Point Cloud Extraction From Oblique Imagery

    Get PDF
    With the increasing availability of low-cost digital cameras with small or medium sized sensors, more and more airborne images are available with high resolution, which enhances the possibility in establishing three dimensional models for urban areas. The high accuracy of representation of buildings in urban areas is required for asset valuation or disaster recovery. Many automatic methods for modeling and reconstruction are applied to aerial images together with Light Detection and Ranging (LiDAR) data. If LiDAR data are not provided, manual steps must be applied, which results in semi-automated technique. The automated extraction of 3D urban models can be aided by the automatic extraction of dense point clouds. The more dense the point clouds, the easier the modeling and the higher the accuracy. Also oblique aerial imagery provides more facade information than nadir images, such as building height and texture. So a method for automatic dense point cloud extraction from oblique images is desired. In this thesis, a modified workflow for the automated extraction of dense point clouds from oblique images is proposed and tested. The result reveals that this modified workflow works well and a very dense point cloud can be extracted from only two oblique images with slightly higher accuracy in flat areas than the one extracted by the original workflow. The original workflow was established by previous research at the Rochester Institute of Technology (RIT) for point cloud extraction from nadir images. For oblique images, a first modification is proposed in the feature detection part by replacing the Scale-Invariant Feature Transform (SIFT) algorithm with the Affine Scale-Invariant Feature Transform (ASIFT) algorithm. After that, in order to realize a very dense point cloud, the Semi-Global Matching (SGM) algorithm is implemented in the second modification to compute the disparity map from a stereo image pair, which can then be used to reproject pixels back to a point cloud. A noise removal step is added in the third modification. The point cloud from the modified workflow is much denser compared to the result from the original workflow. An accuracy assessment is made in the end to evaluate the point cloud extracted from the modified workflow. From the two flat areas, subsets of points are selected from both original and modified workflow, and then planes are fitted to them, respectively. The Mean Squared Error (MSE) of the points to the fitted plane is compared. The point subsets from the modified workflow have slightly lower MSEs than the ones from the original workflow, respectively. This suggests a much more dense and more accurate point cloud can lead to clear roof borders for roof extraction and improve the possibility of 3D feature detection for 3D point cloud registration
    • 

    corecore