18,423 research outputs found

    Machine Vision System to Induct Binocular Wide-Angle Foveated Information into Both the Human and Computers - Feature Generation Algorithm based on DFT for Binocular Fixation

    Get PDF
    This paper introduces a machine vision system, which is suitable for cooperative works between the human and computer. This system provides images inputted from a stereo camera head not only to the processor but also to the user’s sight as binocular wide-angle foveated (WAF) information, thus it is applicable for Virtual Reality (VR) systems such as tele-existence or training experts. The stereo camera head plays a role to get required input images foveated by special wide-angle optics under camera view direction control and 3D head mount display (HMD) displays fused 3D images to the user. Moreover, an analog video signal processing device much inspired from a structure of the human visual system realizes a unique way to provide WAF information to plural processors and the user. Therefore, this developed vision system is also much expected to be applicable for the human brain and vision research, because the design concept is to mimic the human visual system. Further, an algorithm to generate features using Discrete Fourier Transform (DFT) for binocular fixation in order to provide well-fused 3D images to 3D HMD is proposed. This paper examines influences of applying this algorithm to space variant images such as WAF images, based on experimental results

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Morphing a Stereogram into Hologram

    Full text link
    This paper develops a simple and fast method to reconstruct reality from stereoscopic images. We bring together ideas from robust optical flow techniques, morphing deformations and lightfield 3D rendering in order to create unsupervised multiview images of a scene. The reconstruction algorithm provides a good visualization of the virtual 3D imagery behind stereograms upon display on a headset-free Looking Glass 3D monitor. We discuss the possibility of applying the method for live 3D streaming optimized via an associated lookup table.Comment: PDF, 8 pages, 4 Fig

    Sensor node localisation using a stereo camera rig

    Get PDF
    In this paper, we use stereo vision processing techniques to detect and localise sensors used for monitoring simulated environmental events within an experimental sensor network testbed. Our sensor nodes communicate to the camera through patterns emitted by light emitting diodes (LEDs). Ultimately, we envisage the use of very low-cost, low-power, compact microcontroller-based sensing nodes that employ LED communication rather than power hungry RF to transmit data that is gathered via existing CCTV infrastructure. To facilitate our research, we have constructed a controlled environment where nodes and cameras can be deployed and potentially hazardous chemical or physical plumes can be introduced to simulate environmental pollution events in a controlled manner. In this paper we show how 3D spatial localisation of sensors becomes a straightforward task when a stereo camera rig is used rather than a more usual 2D CCTV camera

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices
    • 

    corecore