633 research outputs found

    3D reconstruction and motion estimation using forward looking sonar

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains including archaeology, oil and gas industry, coral reef monitoring, harbour’s security, and mine countermeasure missions. As electromagnetic signals do not penetrate underwater environment, GPS signals cannot be used for AUV navigation, and optical cameras have very short range underwater which limits their use in most underwater environments. Motion estimation for AUVs is a critical requirement for successful vehicle recovery and meaningful data collection. Classical inertial sensors, usually used for AUV motion estimation, suffer from large drift error. On the other hand, accurate inertial sensors are very expensive which limits their deployment to costly AUVs. Furthermore, acoustic positioning systems (APS) used for AUV navigation require costly installation and calibration. Moreover, they have poor performance in terms of the inferred resolution. Underwater 3D imaging is another challenge in AUV industry as 3D information is increasingly demanded to accomplish different AUV missions. Different systems have been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 3D sonar. While the former features good resolution in general, it is very expensive and requires huge computational power, the later is cheaper implementation but requires long time for full 3D scan even in short ranges. In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by proposing relatively affordable methodologies and study different parameters affecting their performance. We introduce a new motion estimation framework for AUVs which relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on forward looking sonars; the proposed system features cheaper implementation than planar array sonars and solves the delay problem in T configured 3D sonars

    Map building fusing acoustic and visual information using autonomous underwater vehicles

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 30 (2013): 763–783, doi:10.1002/rob.21473.We present a system for automatically building 3-D maps of underwater terrain fusing visual data from a single camera with range data from multibeam sonar. The six-degree of freedom location of the camera relative to the navigation frame is derived as part of the mapping process, as are the attitude offsets of the multibeam head and the on-board velocity sensor. The system uses pose graph optimization and the square root information smoothing and mapping framework to simultaneously solve for the robot’s trajectory, the map, and the camera location in the robot’s frame. Matched visual features are treated within the pose graph as images of 3-D landmarks, while multibeam bathymetry submap matches are used to impose relative pose constraints linking robot poses from distinct tracklines of the dive trajectory. The navigation and mapping system presented works under a variety of deployment scenarios, on robots with diverse sensor suites. Results of using the system to map the structure and appearance of a section of coral reef are presented using data acquired by the Seabed autonomous underwater vehicle.The work described herein was funded by the National Science Foundation Censsis ERC under grant number EEC-9986821, and by the National Oceanic and Atmospheric Administration under grant number NA090AR4320129

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    A brief survey of visual saliency detection

    Get PDF

    Geometric data understanding : deriving case specific features

    Get PDF
    There exists a tradition using precise geometric modeling, where uncertainties in data can be considered noise. Another tradition relies on statistical nature of vast quantity of data, where geometric regularity is intrinsic to data and statistical models usually grasp this level only indirectly. This work focuses on point cloud data of natural resources and the silhouette recognition from video input as two real world examples of problems having geometric content which is intangible at the raw data presentation. This content could be discovered and modeled to some degree by such machine learning (ML) approaches like deep learning, but either a direct coverage of geometry in samples or addition of special geometry invariant layer is necessary. Geometric content is central when there is a need for direct observations of spatial variables, or one needs to gain a mapping to a geometrically consistent data representation, where e.g. outliers or noise can be easily discerned. In this thesis we consider transformation of original input data to a geometric feature space in two example problems. The first example is curvature of surfaces, which has met renewed interest since the introduction of ubiquitous point cloud data and the maturation of the discrete differential geometry. Curvature spectra can characterize a spatial sample rather well, and provide useful features for ML purposes. The second example involves projective methods used to video stereo-signal analysis in swimming analytics. The aim is to find meaningful local geometric representations for feature generation, which also facilitate additional analysis based on geometric understanding of the model. The features are associated directly to some geometric quantity, and this makes it easier to express the geometric constraints in a natural way, as shown in the thesis. Also, the visualization and further feature generation is much easier. Third, the approach provides sound baseline methods to more traditional ML approaches, e.g. neural network methods. Fourth, most of the ML methods can utilize the geometric features presented in this work as additional features.Geometriassa käytetään perinteisesti tarkkoja malleja, jolloin datassa esiintyvät epätarkkuudet edustavat melua. Toisessa perinteessä nojataan suuren datamäärän tilastolliseen luonteeseen, jolloin geometrinen säännönmukaisuus on datan sisäsyntyinen ominaisuus, joka hahmotetaan tilastollisilla malleilla ainoastaan epäsuorasti. Tämä työ keskittyy kahteen esimerkkiin: luonnonvaroja kuvaaviin pistepilviin ja videohahmontunnistukseen. Nämä ovat todellisia ongelmia, joissa geometrinen sisältö on tavoittamattomissa raakadatan tasolla. Tämä sisältö voitaisiin jossain määrin löytää ja mallintaa koneoppimisen keinoin, esim. syväoppimisen avulla, mutta joko geometria pitää kattaa suoraan näytteistämällä tai tarvitaan neuronien lisäkerros geometrisia invariansseja varten. Geometrinen sisältö on keskeinen, kun tarvitaan suoraa avaruudellisten suureiden havainnointia, tai kun tarvitaan kuvaus geometrisesti yhtenäiseen dataesitykseen, jossa poikkeavat näytteet tai melu voidaan helposti erottaa. Tässä työssä tarkastellaan datan muuntamista geometriseen piirreavaruuteen kahden esimerkkiohjelman suhteen. Ensimmäinen esimerkki on pintakaarevuus, joka on uudelleen virinneen kiinnostuksen kohde kaikkialle saatavissa olevan datan ja diskreetin geometrian kypsymisen takia. Kaarevuusspektrit voivat luonnehtia avaruudellista kohdetta melko hyvin ja tarjota koneoppimisessa hyödyllisiä piirteitä. Toinen esimerkki koskee projektiivisia menetelmiä käytettäessä stereovideosignaalia uinnin analytiikkaan. Tavoite on löytää merkityksellisiä paikallisen geometrian esityksiä, jotka samalla mahdollistavat muun geometrian ymmärrykseen perustuvan analyysin. Piirteet liittyvät suoraan johonkin geometriseen suureeseen, ja tämä helpottaa luonnollisella tavalla geometristen rajoitteiden käsittelyä, kuten väitöstyössä osoitetaan. Myös visualisointi ja lisäpiirteiden luonti muuttuu helpommaksi. Kolmanneksi, lähestymistapa suo selkeän vertailumenetelmän perinteisemmille koneoppimisen lähestymistavoille, esim. hermoverkkomenetelmille. Neljänneksi, useimmat koneoppimismenetelmät voivat hyödyntää tässä työssä esitettyjä geometrisia piirteitä lisäämällä ne muiden piirteiden joukkoon
    corecore