3,077 research outputs found

    Stereo R-CNN based 3D Object Detection for Autonomous Driving

    Full text link
    We propose a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery. Our method, called Stereo R-CNN, extends Faster R-CNN for stereo inputs to simultaneously detect and associate object in left and right images. We add extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box. We then recover the accurate 3D bounding box by a region-based photometric alignment using left and right RoIs. Our method does not require depth input and 3D position supervision, however, outperforms all existing fully supervised image-based methods. Experiments on the challenging KITTI dataset show that our method outperforms the state-of-the-art stereo-based method by around 30% AP on both 3D detection and 3D localization tasks. Code has been released at https://github.com/HKUST-Aerial-Robotics/Stereo-RCNN.Comment: Accepted by cvpr201

    Shift R-CNN: Deep Monocular 3D Object Detection with Closed-Form Geometric Constraints

    Full text link
    We propose Shift R-CNN, a hybrid model for monocular 3D object detection, which combines deep learning with the power of geometry. We adapt a Faster R-CNN network for regressing initial 2D and 3D object properties and combine it with a least squares solution for the inverse 2D to 3D geometric mapping problem, using the camera projection matrix. The closed-form solution of the mathematical system, along with the initial output of the adapted Faster R-CNN are then passed through a final ShiftNet network that refines the result using our newly proposed Volume Displacement Loss. Our novel, geometrically constrained deep learning approach to monocular 3D object detection obtains top results on KITTI 3D Object Detection Benchmark, being the best among all monocular methods that do not use any pre-trained network for depth estimation.Comment: v1: Accepted to be published in 2019 IEEE International Conference on Image Processing, Sep 22-25, 2019, Taipei. IEEE Copyright notice added. Minor changes for camera-ready version. (updated May. 15, 2019

    The ApolloScape Open Dataset for Autonomous Driving and its Application

    Full text link
    Autonomous driving has attracted tremendous attention especially in the past few years. The key techniques for a self-driving car include solving tasks like 3D map construction, self-localization, parsing the driving road and understanding objects, which enable vehicles to reason and act. However, large scale data set for training and system evaluation is still a bottleneck for developing robust perception models. In this paper, we present the ApolloScape dataset [1] and its applications for autonomous driving. Compared with existing public datasets from real scenes, e.g. KITTI [2] or Cityscapes [3], ApolloScape contains much large and richer labelling including holistic semantic dense point cloud for each site, stereo, per-pixel semantic labelling, lanemark labelling, instance segmentation, 3D car instance, high accurate location for every frame in various driving videos from multiple sites, cities and daytimes. For each task, it contains at lease 15x larger amount of images than SOTA datasets. To label such a complete dataset, we develop various tools and algorithms specified for each task to accelerate the labelling process, such as 3D-2D segment labeling tools, active labelling in videos etc. Depend on ApolloScape, we are able to develop algorithms jointly consider the learning and inference of multiple tasks. In this paper, we provide a sensor fusion scheme integrating camera videos, consumer-grade motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robust self-localization and semantic segmentation for autonomous driving. We show that practically, sensor fusion and joint learning of multiple tasks are beneficial to achieve a more robust and accurate system. We expect our dataset and proposed relevant algorithms can support and motivate researchers for further development of multi-sensor fusion and multi-task learning in the field of computer vision.Comment: Version 4: Accepted by TPAMI. Version 3: 17 pages, 10 tables, 11 figures, added the application (DeLS-3D) based on the ApolloScape Dataset. Version 2: 7 pages, 6 figures, added comparison with BDD100K datase

    SS3D: Single Shot 3D Object Detector

    Full text link
    Single stage deep learning algorithm for 2D object detection was made popular by Single Shot MultiBox Detector (SSD) and it was heavily adopted in several embedded applications. PointPillars is a state of the art 3D object detection algorithm that uses a Single Shot Detector adapted for 3D object detection. The main downside of PointPillars is that it has a two stage approach with learned input representation based on fully connected layers followed by the Single Shot Detector for 3D detection. In this paper we present Single Shot 3D Object Detection (SS3D) - a single stage 3D object detection algorithm which combines straight forward, statistically computed input representation and a Single Shot Detector (based on PointPillars). Computing the input representation is straight forward, does not involve learning and does not have much computational cost. We also extend our method to stereo input and show that, aided by additional semantic segmentation input; our method produces similar accuracy as state of the art stereo based detectors. Achieving the accuracy of two stage detectors using a single stage approach is important as single stage approaches are simpler to implement in embedded, real-time applications. With LiDAR as well as stereo input, our method outperforms PointPillars. When using LiDAR input, our input representation is able to improve the AP3D of Cars objects in the moderate category from 74.99 to 76.84. When using stereo input, our input representation is able to improve the AP3D of Cars objects in the moderate category from 38.13 to 45.13. Our results are also better than other popular 3D object detectors such as AVOD and F-PointNet

    Real-time 3D Traffic Cone Detection for Autonomous Driving

    Full text link
    Considerable progress has been made in semantic scene understanding of road scenes with monocular cameras. It is, however, mainly related to certain classes such as cars and pedestrians. This work investigates traffic cones, an object class crucial for traffic control in the context of autonomous vehicles. 3D object detection using images from a monocular camera is intrinsically an ill-posed problem. In this work, we leverage the unique structure of traffic cones and propose a pipelined approach to the problem. Specifically, we first detect cones in images by a tailored 2D object detector; then, the spatial arrangement of keypoints on a traffic cone are detected by our deep structural regression network, where the fact that the cross-ratio is projection invariant is leveraged for network regularization; finally, the 3D position of cones is recovered by the classical Perspective n-Point algorithm. Extensive experiments show that our approach can accurately detect traffic cones and estimate their position in the 3D world in real time. The proposed method is also deployed on a real-time, critical system. It runs efficiently on the low-power Jetson TX2, providing accurate 3D position estimates, allowing a race-car to map and drive autonomously on an unseen track indicated by traffic cones. With the help of robust and accurate perception, our race-car won both Formula Student Competitions held in Italy and Germany in 2018, cruising at a top-speed of 54 kmph. Visualization of the complete pipeline, mapping and navigation can be found on our project page.Comment: IEEE Intelligent Vehicles Symposium (IV'19). arXiv admin note: text overlap with arXiv:1809.1054

    False Positive Removal for 3D Vehicle Detection with Penetrated Point Classifier

    Full text link
    Recently, researchers have been leveraging LiDAR point cloud for higher accuracy in 3D vehicle detection. Most state-of-the-art methods are deep learning based, but are easily affected by the number of points generated on the object. This vulnerability leads to numerous false positive boxes at high recall positions, where objects are occasionally predicted with few points. To address the issue, we introduce Penetrated Point Classifier (PPC) based on the underlying property of LiDAR that points cannot be generated behind vehicles. It determines whether a point exists behind the vehicle of the predicted box, and if does, the box is distinguished as false positive. Our straightforward yet unprecedented approach is evaluated on KITTI dataset and achieved performance improvement of PointRCNN, one of the state-of-the-art methods. The experiment results show that precision at the highest recall position is dramatically increased by 15.46 percentage points and 14.63 percentage points on the moderate and hard difficulty of car class, respectively.Comment: Accepted by ICIP 202

    AMZ Driverless: The Full Autonomous Racing System

    Full text link
    This paper presents the algorithms and system architecture of an autonomous racecar. The introduced vehicle is powered by a software stack designed for robustness, reliability, and extensibility. In order to autonomously race around a previously unknown track, the proposed solution combines state of the art techniques from different fields of robotics. Specifically, perception, estimation, and control are incorporated into one high-performance autonomous racecar. This complex robotic system, developed by AMZ Driverless and ETH Zurich, finished 1st overall at each competition we attended: Formula Student Germany 2017, Formula Student Italy 2018 and Formula Student Germany 2018. We discuss the findings and learnings from these competitions and present an experimental evaluation of each module of our solution.Comment: 40 pages, 32 figures, submitted to Journal of Field Robotic

    Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving

    Full text link
    In this paper, we propose a monocular 3D object detection framework in the domain of autonomous driving. Unlike previous image-based methods which focus on RGB feature extracted from 2D images, our method solves this problem in the reconstructed 3D space in order to exploit 3D contexts explicitly. To this end, we first leverage a stand-alone module to transform the input data from 2D image plane to 3D point clouds space for a better input representation, then we perform the 3D detection using PointNet backbone net to obtain objects 3D locations, dimensions and orientations. To enhance the discriminative capability of point clouds, we propose a multi-modal feature fusion module to embed the complementary RGB cue into the generated point clouds representation. We argue that it is more effective to infer the 3D bounding boxes from the generated 3D scene space (i.e., X,Y, Z space) compared to the image plane (i.e., R,G,B image plane). Evaluation on the challenging KITTI dataset shows that our approach boosts the performance of state-of-the-art monocular approach by a large margin.Comment: To appear in ICCV'1

    Fusing Bird View LIDAR Point Cloud and Front View Camera Image for Deep Object Detection

    Full text link
    We propose a new method for fusing a LIDAR point cloud and camera-captured images in the deep convolutional neural network (CNN). The proposed method constructs a new layer called non-homogeneous pooling layer to transform features between bird view map and front view map. The sparse LIDAR point cloud is used to construct the mapping between the two maps. The pooling layer allows efficient fusion of the bird view and front view features at any stage of the network. This is favorable for the 3D-object detection using camera-LIDAR fusion in autonomous driving scenarios. A corresponding deep CNN is designed and tested on the KITTI bird view object detection dataset, which produces 3D bounding boxes from the bird view map. The fusion method shows particular benefit for detection of pedestrians in the bird view compared to other fusion-based object detection networks.Comment: 10 pages, 6 figures, 3 table

    Stereo Vision Based Single-Shot 6D Object Pose Estimation for Bin-Picking by a Robot Manipulator

    Full text link
    We propose a fast and accurate method of 6D object pose estimation for bin-picking of mechanical parts by a robot manipulator. We extend the single-shot approach to stereo vision by application of attention architecture. Our convolutional neural network model regresses to object locations and rotations from either a left image or a right image without depth information. Then, a stereo feature matching module, designated as Stereo Grid Attention, generates stereo grid matching maps. The important point of our method is only to calculate disparity of the objects found by the attention from stereo images, instead of calculating a point cloud over the entire image. The disparity value is then used to calculate the depth to the objects by the principle of triangulation. Our method also achieves a rapid processing speed of pose estimation by the single-shot architecture and it is possible to process a 1024 x 1024 pixels image in 75 milliseconds on the Jetson AGX Xavier implemented with half-float model. Weakly textured mechanical parts are used to exemplify the method. First, we create original synthetic datasets for training and evaluating of the proposed model. This dataset is created by capturing and rendering numerous 3D models of several types of mechanical parts in virtual space. Finally, we use a robotic manipulator with an electromagnetic gripper to pick up the mechanical parts in a cluttered state to verify the validity of our method in an actual scene. When a raw stereo image is used by the proposed method from our stereo camera to detect black steel screws, stainless screws, and DC motor parts, i.e., cases, rotor cores and commutator caps, the bin-picking tasks are successful with 76.3%, 64.0%, 50.5%, 89.1% and 64.2% probability, respectively.Comment: 7 pages, 8 figure
    corecore