51 research outputs found

    VR-Caps: A Virtual Environment for Capsule Endoscopy

    Full text link
    Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain. Physically-realistic simulations providing synthetic data have emerged as a solution to the development of data-driven algorithms. In this work, we present a comprehensive simulation platform for capsule endoscopy operations and introduce VR-Caps, a virtual active capsule environment that simulates a range of normal and abnormal tissue conditions (e.g., inflated, dry, wet etc.) and varied organ types, capsule endoscope designs (e.g., mono, stereo, dual and 360{\deg}camera), and the type, number, strength, and placement of internal and external magnetic sources that enable active locomotion. VR-Caps makes it possible to both independently or jointly develop, optimize, and test medical imaging and analysis software for the current and next-generation endoscopic capsule systems. To validate this approach, we train state-of-the-art deep neural networks to accomplish various medical image analysis tasks using simulated data from VR-Caps and evaluate the performance of these models on real medical data. Results demonstrate the usefulness and effectiveness of the proposed virtual platform in developing algorithms that quantify fractional coverage, camera trajectory, 3D map reconstruction, and disease classification.Comment: 18 pages, 14 figure

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Design and implementation of DSP-based magnetic control system for capsule endoscope

    Get PDF
    PhD ThesisEarly detection methods are key to reducing morbidity rates from digestive tract cancer which is currently one of the fastest growing cancers in the World. Capsule endoscopes (CEs) are a new technology that can be used to improve early detection of the gastrointestinal (GI) tract disorder. The device integrates the technologies such as image processing, optoelectronic engineering, information communication, and biomedical engineering. The capsule is the size and shape of a pill and contains an optoelectronic camera, antenna, transmitter, battery and optoelectronic illuminating light emitting diodes (LEDs). The small size of these devices enables them to offer many advantages over conventional endoscopes such as accessibility to the entire intestine and minimising the risk of perforation, particularly for patients with difficult anatomy (e.g. post-operative scar tissue). Currently used devices are passive and can only follow the natural transit of the intestines, and hence there is considerable interest in methods of controlled actuation for these devices. In this thesis, a novel actuation system based on magnetic levitation is designed, developed and implemented, utilizing a small permanent magnet embedded within the capsule and an arrangement of digitally controlled electromagnets outside the body. The proposed approach is that the magnet can be moved and oriented by DC magnetic force and torque produced by coils placed outside of the human body, with a suitable position feedback sensor enabling closed-loop control. Theoretical analyses of the proposed actuation system are presented which model the magnetic field, force and torque exerted by electromagnetic coil on the embedded magnet. Based on the distribution of the magnetic field, an optimal geometry for the coils is proposed in order to achieve a levitation distance which is realistic for the inspection of the GI tract. Two types of systems are investigated in the thesis, namely single-input single-output (SISO) and multi-input multi-output (MIMO), and the dynamics of these systems are modelled in state space form and hence linear controllers are designed for capsule actuation. The controllers are simulated using Matlab/ Simulink tools to realize the mathematical analysis of the system, and then implemented digitally in real-time using Texas Instruments (TI) TMS320F2812 Digital Signal Processor (DSP) to validate the proposed actuation system. In the SISO system, a linear one degree of freedom (1DOF) proportionalintegral- derivative (PID) controller is designed to move the inserted magnet in the vertical dimension within an area around the operating point and to maintain it at a desired position. A realistic simulation model is designed and implemented to evaluate the proposed controller. Simulation results have shown that the controller is able to successfully hold the embedded magnet in the desired position. For practical validation, the PID controller is implemented in real-time on the DSP system, where pulse width modulation (PWM) is generated to control the coil current, and Hall effect sensors are used for position feedback. Experimental results are obtained under step and square wave input demand. In the proposed system, high frequency noise on the position sensor is initially rejected by hardware implementation of resistor capacitor-low pass filter (RC-LPF) circuit. The accuracy of the position feedback is increased by calibrating the DSP’s on-chip analogue-digital converter (ADC) in order to reduce conversion error due to inherent gain and offset errors. To further reduce the influence of the position feedback noise, an average of ten repeated samples based on mean filter is implemented by the DSP in order to reduce the influctuation of the sensor reading. The tracking performance of the actuation system based on two Hall effect sensors on the opposite coil’s poles is investigated under step trajectory input. In an improved actuation system, position feedback is provided by using an AC magnetic field to obtain the capsule position information, decoupling this from the DC actuation field. The noise of the position feedback in the improved system is reduced by replacing the PWM current drive with a linear power amplifier driven from a digital to analogue converter (DAC), hence reducing AC interference. Positioning sensor noise was found to be further reduced by implementing digital filtering based on a coherent detector using the DSP, without increasing response time. The performance of the actuation system using these position sensors is compared based on settling time, overshoot, steady-state error, and control input parameters in order to validate the proposed improvement in the position feedback. The experimental results have shown that the controller based on both sensing strategies satisfactory control of the magnet’s position. However, the response of the system based on AC position sensing has the shortest settling time, smallest overshoot value and steady-state error. In the MIMO system, several linear controllers such as pole placement (PP), Entire Eigenstructure Assignment (EEA), and linear Quadratic regulator (LQR) techniques are designed and their tracking performances are compared. Simulation results have shown that, based on acceptable control inputs, the LQR controller has the fastest response with minimal overshoot value and steady state error. However, the LQR controller based on 2DOF is unable to maintain stable control of the magnet due to the insufficient position feedback from the two coil sensors. Specifically, it is not possible to achieve a stable 2D system since the orientation angle of the magnet is not resolvable. Therefore, the position feedback is improved by obtaining the device position and orientation information from a pair of 3-axis orthogonal coils. A realistic simulation model for the 3DOF LQR controller is designed and implemented to evaluate the developed system. Simulation results have shown that this controller is can achieve the necessary stability. In conclusion, based on the results from the 1D control system, the thesis shows that the DC magnetic field, which is used for capsule movement, can be also used to provide the controller acceptable position feedback. However, the use of AC magnetic field for positioning purpose provides more accurate position information. In order to implement 2DOF control system successfully, two 3-axis orthogonal coil sensors are considered which are used to provide the actuation algorithm with more accurate feedback of position and orientation information.Ministry of Higher Education, Iraq

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Development of a Novel Amphibious Locomotion System for use in Intra-Luminal Surgical Procedures

    Get PDF
    Colonoscopy is widely considered the gold standard for inspection of the colon. The procedure is however not without issue, current colonoscopes have seen little change or innovation throughout their 40 years of use with patient discomfort still limiting success. The aim of this PhD study was to develop a locomotion system for use on a robotic device that can traverse a liquid filled colon for atraumatic inspection and biopsy tasks. The PhD was undertaken as part of a larger two-centre EU project, which aimed to bring about a change in the way colonoscopy is done by moving to “robotic hydro-colonoscopy”. In this thesis the initial development and testing of an amphibious locomotion concept for use in a procedure known as hydro-colonoscopy is described. The locomotion system is comprised of four Archimedes’ screws arranged in two counter-rotating pairs. These aim to provide propulsion through a fluid-filled colon as well as provide locomotive traction against colonic tissue in partially fluid-filled or collapsed sections of the colon, such as the splenic flexure. Experimental studies were carried out on a single screw system in fluid and dual counter-rotating screws in contact conditions. These show the system’s ability to generate thrust in the two discrete modes of locomotion of the amphibious system. A 2:1 scale prototype of the proposed device was produced and features compliant screw threads to provide atraumatic locomotion. The scale prototype device was tested in ex-vivo porcine colon. The developed system was able to traverse through lumen to limited success, which demonstrated that this concept has the potential for use on an intra-luminal robotic device The key contributions of this research are: variable geometry locomotion system; amphibious locomotion using Archimedes’ screws; experimental assessment of the locomotion in fluid, contact and amphibious states; and analysis of the contact dynamics against tissue
    corecore