625 research outputs found

    Hybrid Approaches for MRF Optimization: Combination of Stochastic and Deterministic Methods

    Get PDF
    ķ•™ģœ„ė…¼ė¬ø (ė°•ģ‚¬)-- ģ„œģšøėŒ€ķ•™źµ ėŒ€ķ•™ģ› : ģ „źø°Ā·ģ»“ķ“Øķ„°ź³µķ•™ė¶€, 2014. 2. ģ“ź²½ė¬“.Markov Random Field (MRF) models are of fundamental importance in computer vision. Many vision problems have been successfully formulated in MRF optimization. They include stereo matching, segmentation, denoising, and inpainting, to mention just a few. To solve them effectively, numerous algorithms have been developed. Although many of them produce good results for relatively easy problems, they are still unsatisfactory when it comes to more difficult MRF problems such as non-submodular energy functions, strongly coupled MRFs, and high-order clique potentials. In this dissertation, several optimization methods are proposed. The main idea of proposed methods is to combine stochastic and deterministic optimization methods. Stochastic methods encourage more exploration in the solution space. On the other hand, deterministic methods enable more efficient exploitation. By combining those two approaches, it is able to obtain better solution. To this end, two stochastic methodologies are exploited for the framework of combination: Markov chain Monte Carlo (MCMC) and stochastic approximation. First methodology is the MCMC. Based on MCMC framework, population based MCMC (Pop-MCMC), MCMC with General Deterministic algorithms (MCMC-GD), and fusion move driven MCMC (MCMC-F) are proposed. Although MCMC provides an elegant framework of which global convergence is provable, it has the slow convergence rate. To overcome, population-based framework and combination with deterministic methods are used. It thereby enables global moves by exchanging information between samples, which in turn, leads to faster mixing rate. In the view of optimization, it means that we can reach a lower energy state rapidly. Second methodology is the stochastic approximation. In stochastic approximation, the objective function for optimization is approximated in stochastic way. To apply this approach to MRF optimization, graph approximation scheme is proposed for the approximation of the energy function. By using this scheme, it alleviates the problem of non-submodularity and partial labeling. This stochastic approach framework is combined with graph cuts which is very efficient algorithm for easy MRF optimizations. By this combination, fusion with graph approximation-based proposals (GA-fusion) is developed. Extensive experiments support that the proposed algorithms are effective across different classes of energy functions. The proposed algorithms are applied in many different computer vision applications including stereo matching, photo montage, inpaining, image deconvolution, and texture restoration. Those algorithms are further analyzed on synthetic MRF problems while varying the difficulties of the problems as well as the parameters for each algorithm.1 Introduction 1 1.1 Markov random eld . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 MRF and Gibbs distribution . . . . . . . . . . . . . . . . . . 1 1.1.2 MAP estimation and energy minimization . . . . . . . . . . . 2 1.1.3 MRF formulation for computer vision problems . . . . . . . . 3 1.2 Optimizing energy function . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . 7 1.2.2 Stochastic approximation . . . . . . . . . . . . . . . . . . . . 8 1.3 combination of stochastic and deterministic methods . . . . . . . . . 9 1.4 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Population-based MCMC 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Swendsen-Wang Cuts . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Population-based MCMC . . . . . . . . . . . . . . . . . . . . 19 2.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Segment-based stereo matching . . . . . . . . . . . . . . . . . 31 2.4.2 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 MCMC Combined with General Deterministic Methods 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Population-based sampling framework for MCMC-GD . . . . 53 3.3.2 Kernel design . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4.1 Analysis on synthetic MRF problems . . . . . . . . . . . . . . 60 3.4.2 Results on real problems . . . . . . . . . . . . . . . . . . . . . 75 3.4.3 Alternative approach: parallel anchor generation . . . . . . . 78 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Fusion Move Driven MCMC 89 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.1 Sampling-based optimization . . . . . . . . . . . . . . . . . . 91 4.2.2 MCMC combined with fusion move . . . . . . . . . . . . . . . 92 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Fusion with Graph Approximation 101 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.1 Graph cuts-based move-making algorithm . . . . . . . . . . . 104 5.2.2 Proposals for fusion approach . . . . . . . . . . . . . . . . . . 106 5.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.1 Stochastic approximation . . . . . . . . . . . . . . . . . . . . 107 5.3.2 Graph approximation . . . . . . . . . . . . . . . . . . . . . . 108 5.3.3 Overall algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.4 Characteristics of approximated function . . . . . . . . . . . 110 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.1 Image deconvolution . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Binary texture restoration . . . . . . . . . . . . . . . . . . . . 115 5.4.3 Analysis on synthetic problems . . . . . . . . . . . . . . . . . 118 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Conclusion 127 6.1 Summary and contribution of the dissertation . . . . . . . . . . . . . 127 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.2.1 MCMC without detailed balance . . . . . . . . . . . . . . . . 128 6.2.2 Stochastic approximation for higher-order MRF model . . . . 130 Bibliography 131 źµ­ė¬øģ“ˆė” 141Docto

    Modelling and analysis of plant image data for crop growth monitoring in horticulture

    Get PDF
    Plants can be characterised by a range of attributes, and measuring these attributes accurately and reliably is a major challenge for the horticulture industry. The measurement of those plant characteristics that are most relevant to a grower has previously been tackled almost exclusively by a combination of manual measurement and visual inspection. The purpose of this work is to propose an automated image analysis approach in order to provide an objective measure of plant attributes to remove subjective factors from assessment and to reduce labour requirements in the glasshouse. This thesis describes a stereopsis approach for estimating plant height, since height information cannot be easily determined from a single image. The stereopsis algorithm proposed in this thesis is efficient in terms of the running time, and is more accurate when compared with other algorithms. The estimated geometry, together with colour information from the image, are then used to build a statistical plant surface model, which represents all the information from the visible spectrum. A self-organising map approach can be adopted to model plant surface attributes, but the model can be improved by using a probabilistic model such as a mixture model formulated in a Bayesian framework. Details of both methods are discussed in this thesis. A Kalman filter is developed to track the plant model over time, extending the model to the time dimension, which enables smoothing of the noisy measurements to produce a development trend for a crop. The outcome of this work could lead to a number of potentially important applications in horticulture

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data

    Novel sampling techniques for reservoir history matching optimisation and uncertainty quantification in flow prediction

    Get PDF
    Modern reservoir management has an increasing focus on accurately predicting the likely range of field recoveries. A variety of assisted history matching techniques has been developed across the research community concerned with this topic. These techniques are based on obtaining multiple models that closely reproduce the historical flow behaviour of a reservoir. The set of resulted history matched models is then used to quantify uncertainty in predicting the future performance of the reservoir and providing economic evaluations for different field development strategies. The key step in this workflow is to employ algorithms that sample the parameter space in an efficient but appropriate manner. The algorithm choice has an impact on how fast a model is obtained and how well the model fits the production data. The sampling techniques that have been developed to date include, among others, gradient based methods, evolutionary algorithms, and ensemble Kalman filter (EnKF). This thesis has investigated and further developed the following sampling and inference techniques: Particle Swarm Optimisation (PSO), Hamiltonian Monte Carlo, and Population Markov Chain Monte Carlo. The inspected techniques have the capability of navigating the parameter space and producing history matched models that can be used to quantify the uncertainty in the forecasts in a faster and more reliable way. The analysis of these techniques, compared with Neighbourhood Algorithm (NA), has shown how the different techniques affect the predicted recovery from petroleum systems and the benefits of the developed methods over the NA. The history matching problem is multi-objective in nature, with the production data possibly consisting of multiple types, coming from different wells, and collected at different times. Multiple objectives can be constructed from these data and explicitly be optimised in the multi-objective scheme. The thesis has extended the PSO to handle multi-objective history matching problems in which a number of possible conflicting objectives must be satisfied simultaneously. The benefits and efficiency of innovative multi-objective particle swarm scheme (MOPSO) are demonstrated for synthetic reservoirs. It is demonstrated that the MOPSO procedure can provide a substantial improvement in finding a diverse set of good fitting models with a fewer number of very costly forward simulations runs than the standard single objective case, depending on how the objectives are constructed. The thesis has also shown how to tackle a large number of unknown parameters through the coupling of high performance global optimisation algorithms, such as PSO, with model reduction techniques such as kernel principal component analysis (PCA), for parameterising spatially correlated random fields. The results of the PSO-PCA coupling applied to a recent SPE benchmark history matching problem have demonstrated that the approach is indeed applicable for practical problems. A comparison of PSO with the EnKF data assimilation method has been carried out and has concluded that both methods have obtained comparable results on the example case. This point reinforces the need for using a range of assisted history matching algorithms for more confidence in predictions

    A population Monte Carlo approach to estimating parametric bidirectional reflectance distribution functions through Markov random field parameter estimation

    Get PDF
    In this thesis, we propose a method for estimating the parameters of a parametric bidirectional reflectance distribution function (BRDF) for an object surface. The method uses a novel Markov Random Field (MRF) formulation on triplets of corner vertex nodes to model the probability of sets of reflectance parameters for arbitrary reflectance models, given probabilistic surface geometry, camera, illumination, and reflectance image information. In this way, the BRDF parameter estimation problem is cast as a MRF parameter estimation problem. We also present a novel method for estimating the MRF parameters, which uses Population Monte Carlo (PMC) sampling to yield a posterior distribution over the parameters of the BRDF. This PMC based method for estimating the posterior distribution on MRF parameters is compared, using synthetic data, to other parameter estimation methods based on Markov Chain Monte Carlo (MCMC) and Levenberg-Marquardt nonlinear minimization, where it is found to have better results for convergence to the known correct synthetic data parameter sets than the MCMC based methods, and similar convergence results to the LM method. The posterior distributions on the parametric BRDFs for real surfaces, which are represented as evolved sample sets calculated using a Population Monte Carlo algorithm, can be used as features in other high-level vision material or surface classification methods. A variety of probabilistic distances between these features, including the Kullback-Leibler divergence, the Bhattacharyya distance and the Patrick-Fisher distance is used to test the classifiability of the materials, using the PMC evolved sample sets as features. In our experiments on real data, which comprises 48 material surfaces belonging to 12 classes of material, classification errors are counted by comparing the 1-nearest-neighbour classification results to the known (manually specified) material classes. Other classification error statistics such as WNN (worst nearest neighbour) are also calculated. The symmetric Kullback-Leibler divergence, used as a distance measure between the PMC developed sample sets, is the distance measure which gives the best classification results on the real data, when using the 1-nearest neighbour classification method. It is also found that the sets of samples representing the posterior distributions over the MRF parameter spaces are better features for material surface classification than the optimal MRF parameters returned by multiple-seed Levenberg-Marquardt minimization algorithms, which are configured to find the same MRF parameters. The classifiability of the materials is also better when using the entire evolved sample sets (calculated by PMC) as classification features than it is when using only the maximum a-posteriori sample from the PMC evolved sample sets as the feature for each material. It is therefore possible to calculate usable parametric BRDF features for surface classification, using our method

    Extraction of Unfoliaged Trees from Terrestrial Image Sequences

    Get PDF
    This thesis presents a generative statistical approach for the fully automatic three-dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-baseline image sequences. Tree models improve the realism of 3D Geoinformation systems (GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from images due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from different viewpoints. The proposed approach combines generative modeling by L-systems and statistical maximum a posteriori (MAP) estimation for the extraction of the 3D branching structure of trees. Background estimation is conducted by means of mathematical (gray scale) morphology as basis for generative modeling. A Gaussian likelihood function based on intensity differences is employed to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence of multiple parameters in the Markov Chain considering their characteristics and the performance in the previous step. A tree is classified into three typical branching types after the extraction of the first level of branches and more specific Production Rules of L-systems are used accordingly. Generic prior distributions for parameters are refined based on already extracted branches in a Bayesian framework and integrated into the MAP estimation. By these means most of the branching structure besides tiny twigs can be reconstructed. Results are presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating the potential of the approach as well as its current shortcomings.Diese Dissertationsschrift stellt einen generativen statistischen Ansatz fĆ¼r die vollautomatische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter LaubbƤume aus Bildsequenzen mit groƟer Basis vor. Modelle fĆ¼r BƤume verbessern den Realismus von 3D Geoinformationssystemen (GIS), indem sie Letzteren eine natĆ¼rliche Note geben. Wegen z.T. schwachem Kontrast, Stƶrobjekten im Hintergrund, Verdeckungen und insbesondere der mƶglicherweise unterschiedlichen Ordnung der Ƅste in Bildern von verschiedenen Blickpunkten sind unbelaubte BƤume aber schwierig zu rekonstruieren. Der vorliegende Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum A Posteriori (MAP) SchƤtzung fĆ¼r die Extraktion der 3D Verzweigungsstruktur von BƤumen. Hintergrund-SchƤtzung wird auf Grundlage von mathematischer (Grauwert) Morphologie als Basis fĆ¼r die generative Modellierung durchgefĆ¼hrt. FĆ¼r die Bewertung der Hypothesen wird eine GauƟsche Likelihood-Funktion basierend auf IntensitƤtsunterschieden benutzt. Es wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Parameter fĆ¼r die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ƅsten in drei typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ƅsten werden generische Prior-Verteilungen fĆ¼r die Parameter in einem Bayesā€™schen Rahmen verfeinert und in die MAP SchƤtzung integriert. Damit kann ein groƟer Teil der Verzweigungsstruktur auƟer kleinen Ƅsten extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen Defizite des Ansatzes
    • ā€¦
    corecore