18 research outputs found

    From Science to e-Science to Semantic e-Science: A Heliosphysics Case Study

    Get PDF
    The past few years have witnessed unparalleled efforts to make scientific data web accessible. The Semantic Web has proven invaluable in this effort; however, much of the literature is devoted to system design, ontology creation, and trials and tribulations of current technologies. In order to fully develop the nascent field of Semantic e-Science we must also evaluate systems in real-world settings. We describe a case study within the field of Heliophysics and provide a comparison of the evolutionary stages of data discovery, from manual to semantically enable. We describe the socio-technical implications of moving toward automated and intelligent data discovery. In doing so, we highlight how this process enhances what is currently being done manually in various scientific disciplines. Our case study illustrates that Semantic e-Science is more than just semantic search. The integration of search with web services, relational databases, and other cyberinfrastructure is a central tenet of our case study and one that we believe has applicability as a generalized research area within Semantic e-Science. This case study illustrates a specific example of the benefits, and limitations, of semantically replicating data discovery. We show examples of significant reductions in time and effort enable by Semantic e-Science; yet, we argue that a "complete" solution requires integrating semantic search with other research areas such as data provenance and web services

    The ESPAS e-infrastructure

    Get PDF
    ESPAS provides an e-Infrastructure to support access to a wide range of archived observations and model derived data for the near-Earth space environment, extending from the Earth's middle atmosphere up to the outer radiation belts. To this end, ESPAS will serve as a central access hub for researchers who wish to exploit multi-instrument multipoint data for scientific discovery, model development and validation, and data assimilation, among others. Observation based and model enhanced scientific understanding of the physical state of the Earth's space environment and its evolution is critical to advancing space weather and space climate studies, two very active branches of current scientific research. ESPAS offers an interoperable data infrastructure that enables users to find, access, and exploit near-Earth space environment observations from ground-based and spaceborne instruments and data from relevant models, obtained from distributed repositories. In order to facilitate efficient user queries ESPAS allows a highly flexible workflow scheme to select and request the desired data sets. ESPAS has the strategic goal of making Europe a leading player in the efficient use and dissemination of near-Earth space environment information offered by institutions, laboratories and research teams in Europe and worldwide, that are active in collecting, processing and distributing scientific data. Therefore, ESPAS is committed to support and foster new data providers who wish to promote the easy use of their data and models by the research community via a central access framework. ESPAS is open to all potential users interested in near-Earth space environment data, including those who are active in basic scientific research, technical or operational development and commercial applications

    GSFC Heliophysics Science Division 2008 Science Highlights

    Get PDF
    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2008, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 261 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include Lead science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Lead the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Provide access to measurements from the Heliophysics Great Observatory through our Science Information Systems, and Communicate science results to the public and inspire the next generation of scientists and explorers

    GSFC Heliophysics Science Division FY2010 Annual Report

    Get PDF
    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2010, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 323 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers

    GSFC Heliophysics Science Division 2009 Science Highlights

    Get PDF
    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2009, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 299 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers

    Managing Research Data: Gravitational Waves

    Get PDF
    The project which led to this report was funded by JISC in 2010ā€“2011 as part of its ā€˜Managing Research Dataā€™ programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we deļ¬ne what we mean by ā€˜big scienceā€™, describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the beneļ¬ts of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather light-touch prescriptions regarding data preservation planning: normal data management practice, in the areas under study, corresponds to notably good practice in most other areas, so that the only change we suggest is to make this planning more formal, which makes it more easily auditable, and more amenable to constructive criticism. In Sect. 3 we brieļ¬‚y discuss the LIGO data management plan, and pull together whatever information is available on the estimation of digital preservation costs. The report is informed, throughout, by the OAIS reference model for an open archive. Some of the reportā€™s ļ¬ndings and conclusions were summarised in [1]. See the document history on page 37
    corecore