264,875 research outputs found

    Secondary mathematics guidance papers: summer 2008

    Get PDF

    Smoothing Method for Approximate Extensive-Form Perfect Equilibrium

    Full text link
    Nash equilibrium is a popular solution concept for solving imperfect-information games in practice. However, it has a major drawback: it does not preclude suboptimal play in branches of the game tree that are not reached in equilibrium. Equilibrium refinements can mend this issue, but have experienced little practical adoption. This is largely due to a lack of scalable algorithms. Sparse iterative methods, in particular first-order methods, are known to be among the most effective algorithms for computing Nash equilibria in large-scale two-player zero-sum extensive-form games. In this paper, we provide, to our knowledge, the first extension of these methods to equilibrium refinements. We develop a smoothing approach for behavioral perturbations of the convex polytope that encompasses the strategy spaces of players in an extensive-form game. This enables one to compute an approximate variant of extensive-form perfect equilibria. Experiments show that our smoothing approach leads to solutions with dramatically stronger strategies at information sets that are reached with low probability in approximate Nash equilibria, while retaining the overall convergence rate associated with fast algorithms for Nash equilibrium. This has benefits both in approximate equilibrium finding (such approximation is necessary in practice in large games) where some probabilities are low while possibly heading toward zero in the limit, and exact equilibrium computation where the low probabilities are actually zero.Comment: Published at IJCAI 1

    Churn Prediction Task in MOOC

    Get PDF
    Churn prediction is a common task for machine learning applications in business. In this paper, this task is adapted for solving problem of low efficiency of massive open online courses (only 5% of all the students finish their course). The approach is presented on course “Methods and algorithms of the graph theory” held on national platform of online education in Russia. This paper includes all the steps to build an intelligent system to predict students who are active during the course, but not likely to finish it. The first part consists of constructing the right sample for prediction, EDA and choosing the most appropriate week of the course to make predictions on. The second part is about choosing the right metric and building models. Also, approach with using ensembles like stacking is proposed to increase the accuracy of predictions. As a result, a general approach to build a churn prediction model for online course is reviewed. This approach can be used for making the process of online education adaptive and intelligent for a separate student
    corecore