23,422 research outputs found

    Step-Indexed Logical Relations for Probability (long version)

    Full text link
    It is well-known that constructing models of higher-order probabilistic programming languages is challenging. We show how to construct step-indexed logical relations for a probabilistic extension of a higher-order programming language with impredicative polymorphism and recursive types. We show that the resulting logical relation is sound and complete with respect to the contextual preorder and, moreover, that it is convenient for reasoning about concrete program equivalences. Finally, we extend the language with dynamically allocated first-order references and show how to extend the logical relation to this language. We show that the resulting relation remains useful for reasoning about examples involving both state and probabilistic choice.Comment: Extended version with appendix of a FoSSaCS'15 pape

    Possible Patterns

    Get PDF
    “There are no gaps in logical space,” David Lewis writes, giving voice to sentiment shared by many philosophers. But different natural ways of trying to make this sentiment precise turn out to conflict with one another. One is a *pattern* idea: “Any pattern of instantiation is metaphysically possible.” Another is a *cut and paste* idea: “For any objects in any worlds, there exists a world that contains any number of duplicates of all of those objects.” We use resources from model theory to show the inconsistency of certain packages of combinatorial principles and the consistency of others

    Jurimetrics: The Methodology of Legal Inquiry

    Get PDF

    On Probabilistic Applicative Bisimulation and Call-by-Value λ\lambda-Calculi (Long Version)

    Get PDF
    Probabilistic applicative bisimulation is a recently introduced coinductive methodology for program equivalence in a probabilistic, higher-order, setting. In this paper, the technique is applied to a typed, call-by-value, lambda-calculus. Surprisingly, the obtained relation coincides with context equivalence, contrary to what happens when call-by-name evaluation is considered. Even more surprisingly, full-abstraction only holds in a symmetric setting.Comment: 30 page

    The Laplace-Jaynes approach to induction

    Get PDF
    An approach to induction is presented, based on the idea of analysing the context of a given problem into `circumstances'. This approach, fully Bayesian in form and meaning, provides a complement or in some cases an alternative to that based on de Finetti's representation theorem and on the notion of infinite exchangeability. In particular, it gives an alternative interpretation of those formulae that apparently involve `unknown probabilities' or `propensities'. Various advantages and applications of the presented approach are discussed, especially in comparison to that based on exchangeability. Generalisations are also discussed.Comment: 38 pages, 1 figure. V2: altered discussion on some points, corrected typos, added reference

    Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitanyi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.Comment: 43 page

    Information Retrieval Models

    Get PDF
    Many applications that handle information on the internet would be completely\ud inadequate without the support of information retrieval technology. How would\ud we find information on the world wide web if there were no web search engines?\ud How would we manage our email without spam filtering? Much of the development\ud of information retrieval technology, such as web search engines and spam\ud filters, requires a combination of experimentation and theory. Experimentation\ud and rigorous empirical testing are needed to keep up with increasing volumes of\ud web pages and emails. Furthermore, experimentation and constant adaptation\ud of technology is needed in practice to counteract the effects of people that deliberately\ud try to manipulate the technology, such as email spammers. However,\ud if experimentation is not guided by theory, engineering becomes trial and error.\ud New problems and challenges for information retrieval come up constantly.\ud They cannot possibly be solved by trial and error alone. So, what is the theory\ud of information retrieval?\ud There is not one convincing answer to this question. There are many theories,\ud here called formal models, and each model is helpful for the development of\ud some information retrieval tools, but not so helpful for the development others.\ud In order to understand information retrieval, it is essential to learn about these\ud retrieval models. In this chapter, some of the most important retrieval models\ud are gathered and explained in a tutorial style
    • 

    corecore