297 research outputs found

    Advanced Pedestrian Positioning System to Smartphones and Smartwatches

    Get PDF
    In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR) algorithms for the estimation of the user's position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS). We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m2

    RuDaCoP: The Dataset for Smartphone-based Intellectual Pedestrian Navigation

    Full text link
    This paper presents the large and diverse dataset for development of smartphone-based pedestrian navigation algorithms. This dataset consists of about 1200 sets of inertial measurements from sensors of several smartphones. The measurements are collected while walking through different trajectories up to 10 minutes long. The data are accompanied by the high accuracy ground truth collected with two foot-mounted inertial measurement units and post-processed by the presented algorithms. The dataset suits both for training of intellectual pedestrian navigation algorithms based on learning techniques and for development of pedestrian navigation algorithms based on classical approaches. The dataset is accessible at http://gartseev.ru/projects/ipin2019

    Indoor positioning for smartphones without infrastructure and user adaptable

    Get PDF
    Given that the classic solutions for positioning outdoors, such as GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) do not work indoors, there have been emerging multiple alternatives for Indoor Location. Usually these solutions require extensive and complex installations, which involve high costs. In this thesis we present a robust indoor positioning solution for smartphones that maximizes location accuracy while minimizes the required infrastructure. We have considered two main modes of displacement: walking and in a vehicle. Our solution is robust to different users, allows them to carry the phone in different positions and allows to use the device freely while performing different daily activities, such as walking, driving , going up and down stairs, etc. We achieved that by developing a robust indoor positioning system that combines information from multiple sources such as radio frequency readings and inertial sensors

    Indoor pedestrian dead reckoning calibration by visual tracking and map information

    Get PDF
    Currently, Pedestrian Dead Reckoning (PDR) systems are becoming more attractive in market of indoor positioning. This is mainly due to the development of cheap and light Micro Electro-Mechanical Systems (MEMS) on smartphones and less requirement of additional infrastructures in indoor areas. However, it still faces the problem of drift accumulation and needs the support from external positioning systems. Vision-aided inertial navigation, as one possible solution to that problem, has become very popular in indoor localization with satisfied performance than individual PDR system. In the literature however, previous studies use fixed platform and the visual tracking uses feature-extraction-based methods. This paper instead contributes a distributed implementation of positioning system and uses deep learning for visual tracking. Meanwhile, as both inertial navigation and optical system can only provide relative positioning information, this paper contributes a method to integrate digital map with real geographical coordinates to supply absolute location. This hybrid system has been tested on two common operation systems of smartphones as iOS and Android, based on corresponded data collection apps respectively, in order to test the robustness of method. It also uses two different ways for calibration, by time synchronization of positions and heading calibration based on time steps. According to the results, localization information collected from both operation systems has been significantly improved after integrating with visual tracking data

    Integração de localização baseada em movimento na aplicação móvel EduPARK

    Get PDF
    More and more, mobile applications require precise localization solutions in a variety of environments. Although GPS is widely used as localization solution, it may present some accuracy problems in special conditions such as unfavorable weather or spaces with multiple obstructions such as public parks. For these scenarios, alternative solutions to GPS are of extreme relevance and are widely studied recently. This dissertation studies the case of EduPARK application, which is an augmented reality application that is implemented in the Infante D. Pedro park in Aveiro. Due to the poor accuracy of GPS in this park, the implementation of positioning and marker-less augmented reality functionalities presents difficulties. Existing relevant systems are analyzed, and an architecture based on pedestrian dead reckoning is proposed. The corresponding implementation is presented, which consists of a positioning solution using the sensors available in the smartphones, a step detection algorithm, a distance traveled estimator, an orientation estimator and a position estimator. For the validation of this solution, functionalities were implemented in the EduPARK application for testing purposes and usability tests performed. The results obtained show that the proposed solution can be an alternative to provide accurate positioning within the Infante D. Pedro park, thus enabling the implementation of functionalities of geocaching and marker-less augmented reality.Cada vez mais, as aplicações móveis requerem soluções de localização precisa nos mais variados ambientes. Apesar de o GPS ser amplamente usado como solução para localização, pode apresentar alguns problemas de precisão em condições especiais, como mau tempo, ou espaços com várias obstruções, como parques públicos. Para estes casos, soluções alternativas ao GPS são de extrema relevância e veem sendo desenvolvidas. A presente dissertação estuda o caso do projeto EduPARK, que é uma aplicação móvel de realidade aumentada para o parque Infante D. Pedro em Aveiro. Devido à fraca precisão do GPS nesse parque, a implementação de funcionalidades baseadas no posionamento e de realidade aumentada sem marcadores apresenta dificuldades. São analisados sistemas relevantes existentes e é proposta uma arquitetura baseada em localização de pedestres. Em seguida é apresentada a correspondente implementação, que consiste numa solução de posicionamento usando os sensores disponiveis nos smartphones, um algoritmo de deteção de passos, um estimador de distância percorrida, um estimador de orientação e um estimador de posicionamento. Para a validação desta solução, foram implementadas funcionalidades na aplicação EduPARK para fins de teste, e realizados testes com utilizadores e testes de usabilidade. Os resultados obtidos demostram que a solução proposta pode ser uma alternativa para a localização no interior do parque Infante D. Pedro, viabilizando desta forma a implementação de funcionalidades baseadas no posicionamento e de realidade aumenta sem marcadores.EduPARK é um projeto financiado por Fundos FEDER através do Programa Operacional Competitividade e Internacionalização - COMPETE 2020 e por Fundos Nacionais através da FCT - Fundação para a Ciência e a Tecnologia no âmbito do projeto POCI-01-0145-FEDER-016542.Mestrado em Engenharia Informátic

    LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph- Matching

    Get PDF
    Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (ULPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaAgencia Estatal de Investigació

    Wearable-Based pedestrian localization through fusjon of inertial sensor measurements

    Get PDF
    Hoy en día existe una gran demanda de sistemas de navegación personales integrados en servicios como gestión de desastres para personal de rescate. También se demandan sistemas de navegación personales como guía en grandes superficies, por ejemplo, hospitales, aeropuertos o centros comerciales. En esta tesis doctoral los escenarios estudiados son interiores y urbanos. La navegación se realiza por medio de sensores inerciales y magnéticos, idóneos por su amplia difusión, tamaño y peso reducido y porque no necesitan infraestructura. Se llevarán a cabo investigaciones para mejorar los algoritmos de navegación ya existentes y cubrir determinados aspectos aún no resueltos. En primer lugar se ha llevado a cabo un extenso análisis sobre los beneficios de usar medidas magnéticas para compensar los errores sistemáticos de los sensores inerciales, así como su efecto en la estimación de la orientación. Para ello se han usado medidas de referencia con valores de error conocidos combinando diferentes distribuciones de campos magnéticos. Los resultados obtenidos quedan respaldados con medidas realizadas con sensores reales de medio coste. Se ha concluido que el uso de medidas magnéticas es beneficioso porque acota errores en la orientación. Sin embargo, los escenarios bajo estudio suelen presentar campos magnéticos perturbados, lo que provoca que el proceso de estimación de errores sea prohibitivamente largo. En esta tesis doctoral se proponen algoritmos alternativos para el cálculo del desplazamiento horizontal del usuario, que han sido comparados con respecto a los ya existentes, ofreciendo los propuestos un mejor rendimiento. Además se incluye un innovador algoritmo para calcular el desplazamiento vertical del usuario, haciendo por primera vez posible obtener trayectorias en 3D usando solamente sensores inerciales no colocados en el zapato. Por último se propone un novedoso algoritmo capaz de prevenir errores de posición provocados por errores de rumbo. El algoritmo está basado en puntos de referencia automáticamente detectados por medio de medidas inerciales. Los puntos de referencia elegidos para los escenarios cubiertos son escaleras y esquinas, que al revisitarse permiten calcular el error acumulado en la trayectoria. Este error es compensado consiguiendo así acotar el error de rumbo. Este algoritmo ha sido extensamente probado con medidas de referencia y medidas realizadas con sensores reales de medio coste. La compensación de este error se adapta a las características del sistema de navegación personal
    corecore