505 research outputs found

    Acquisition of Inflectional Morphology in Artificial Neural Networks With Prior Knowledge

    Get PDF
    How does knowledge of one language’s morphology influence learning of inflection rules in a second one? In order to investigate this question in artificial neural network models, we perform experiments with a sequence-to-sequence architecture, which we train on different combinations of eight source and three target languages. A detailed analysis of the model outputs suggests the following conclusions: (i) if source and target language are closely related, acquisition of the target language’s inflectional morphology constitutes an easier task for the model; (ii) knowledge of a prefixing (resp. suffixing) language makes acquisition of a suffixing (resp. prefixing) language’s morphology more challenging; and (iii) surprisingly, a source language which exhibits an agglutinative morphology simplifies learning of a second language’s inflectional morphology, independent of their relatedness

    Sentential Paraphrase Generation for Agglutinative Languages Using SVM with a String Kernel

    Get PDF

    Rule-Based Machine Translation From Kazakh To Turkish

    Get PDF
    This paper presents a shallow-transfer machine translation (MT) system for translating from Kazakh to Turkish. Background on the differences between the languages is presented, followed by how the system was designed to handle some of these differences. The system is based on the Apertium free/open-source machine translation platform. The structure of the system and how it works is described, along with an evaluation against two competing systems. Linguistic components were developed, including a Kazakh-Turkish bilingual dictionary, Constraint Grammar disambiguation rules, lexical selection rules, and structural transfer rules. With many known issues yet to be addressed, our RBMT system has reached performance comparable to publicly-available corpus-based MT systems between the languages

    Proceedings of the Morpho Challenge 2010 Workshop

    Get PDF
    In natural language processing many practical tasks, such as speech recognition, information retrieval and machine translation depend on a large vocabulary and statistical language models. For morphologically rich languages, such as Finnish and Turkish, the construction of a vocabulary and language models that have a sufficient coverage is particularly difficult, because of the huge amount of different word forms. In Morpho Challenge 2010 unsupervised and semi-supervised algorithms are suggested to provide morpheme analyses for words in different languages and evaluated in various practical applications. As a research theme, unsupervised morphological analysis has received wide attention in conferences and scientific journals focused on computational linguistic and its applications. This is the proceedings of the Morpho Challenge 2010 Workshop that contains one introduction article with a description of the tasks, evaluation and results and six articles describing the participating unsupervised and supervised learning algorithms. The Morpho Challenge 2010 Workshop was held at Espoo, Finland in 2-3 September, 2010.reviewe

    Turkish lexicon expansion by using finite state automata

    Get PDF
    © 2019 The Authors. Published by The Scientific and Technological Research Council of Turkey. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://journals.tubitak.gov.tr/elektrik/issues/elk-19-27-2/elk-27-2-25-1804-10.pdfTurkish is an agglutinative language with rich morphology. A Turkish verb can have thousands of different word forms. Therefore, sparsity becomes an issue in many Turkish natural language processing (NLP) applications. This article presents a model for Turkish lexicon expansion. We aimed to expand the lexicon by using a morphological segmentation system by reversing the segmentation task into a generation task. Our model uses finite-state automata (FSA) to incorporate orthographic features and morphotactic rules. We extracted orthographic features by capturing phonological operations that are applied to words whenever a suffix is added. Each FSA state corresponds to either a stem or a suffix category. Stems are clustered based on their parts-of-speech (i.e. noun, verb, or adjective) and suffixes are clustered based on their allomorphic features. We generated approximately 1 million word forms by using only a few thousand Turkish stems with an accuracy of 82.36%, which will help to reduce the out-of-vocabulary size in other NLP applications. Although our experiments are performed on Turkish language, the same model is also applicable to other agglutinative languages such as Hungarian and Finnish.Published versio

    Machine translation of morphologically rich languages using deep neural networks

    Get PDF
    This thesis addresses some of the challenges of translating morphologically rich languages (MRLs). Words in MRLs have more complex structures than those in other languages, so that a word can be viewed as a hierarchical structure with several internal subunits. Accordingly, word-based models in which words are treated as atomic units are not suitable for this set of languages. As a commonly used and eff ective solution, morphological decomposition is applied to segment words into atomic and meaning-preserving units, but this raises other types of problems some of which we study here. We mainly use neural networks (NNs) to perform machine translation (MT) in our research and study their diff erent properties. However, our research is not limited to neural models alone as we also consider some of the difficulties of conventional MT methods. First we try to model morphologically complex words (MCWs) and provide better word-level representations. Words are symbolic concepts which are represented numerically in order to be used in NNs. Our first goal is to tackle this problem and find the best representation for MCWs. In the next step we focus on language modeling (LM) and work at the sentence level. We propose new morpheme-segmentation models by which we finetune existing LMs for MRLs. In this part of our research we try to find the most efficient neural language model for MRLs. After providing word- and sentence-level neural information in the first two steps, we try to use such information to enhance the translation quality in the statistical machine translation (SMT) pipeline using several diff erent models. Accordingly, the main goal in this part is to find methods by which deep neural networks (DNNs) can improve SMT. One of the main interests of the thesis is to study neural machine translation (NMT) engines from diff erent perspectives, and finetune them to work with MRLs. In the last step we target this problem and perform end-to-end sequence modeling via NN-based models. NMT engines have recently improved significantly and perform as well as state-of-the-art systems, but still have serious problems with morphologically complex constituents. This shortcoming of NMT is studied in two separate chapters in the thesis, where in one chapter we investigate the impact of diff erent non-linguistic morpheme-segmentation models on the NMT pipeline, and in the other one we benefit from a linguistically motivated morphological analyzer and propose a novel neural architecture particularly for translating from MRLs. Our overall goal for this part of the research is to find the most suitable neural architecture to translate MRLs. We evaluated our models on diff erent MRLs such as Czech, Farsi, German, Russian, and Turkish, and observed significant improvements. The main goal targeted in this research was to incorporate morphological information into MT and define architectures which are able to model the complex nature of MRLs. The results obtained from our experimental studies confirm that we were able to achieve our goal

    Machine translation of morphologically rich languages using deep neural networks

    Get PDF
    This thesis addresses some of the challenges of translating morphologically rich languages (MRLs). Words in MRLs have more complex structures than those in other languages, so that a word can be viewed as a hierarchical structure with several internal subunits. Accordingly, word-based models in which words are treated as atomic units are not suitable for this set of languages. As a commonly used and eff ective solution, morphological decomposition is applied to segment words into atomic and meaning-preserving units, but this raises other types of problems some of which we study here. We mainly use neural networks (NNs) to perform machine translation (MT) in our research and study their diff erent properties. However, our research is not limited to neural models alone as we also consider some of the difficulties of conventional MT methods. First we try to model morphologically complex words (MCWs) and provide better word-level representations. Words are symbolic concepts which are represented numerically in order to be used in NNs. Our first goal is to tackle this problem and find the best representation for MCWs. In the next step we focus on language modeling (LM) and work at the sentence level. We propose new morpheme-segmentation models by which we finetune existing LMs for MRLs. In this part of our research we try to find the most efficient neural language model for MRLs. After providing word- and sentence-level neural information in the first two steps, we try to use such information to enhance the translation quality in the statistical machine translation (SMT) pipeline using several diff erent models. Accordingly, the main goal in this part is to find methods by which deep neural networks (DNNs) can improve SMT. One of the main interests of the thesis is to study neural machine translation (NMT) engines from diff erent perspectives, and finetune them to work with MRLs. In the last step we target this problem and perform end-to-end sequence modeling via NN-based models. NMT engines have recently improved significantly and perform as well as state-of-the-art systems, but still have serious problems with morphologically complex constituents. This shortcoming of NMT is studied in two separate chapters in the thesis, where in one chapter we investigate the impact of diff erent non-linguistic morpheme-segmentation models on the NMT pipeline, and in the other one we benefit from a linguistically motivated morphological analyzer and propose a novel neural architecture particularly for translating from MRLs. Our overall goal for this part of the research is to find the most suitable neural architecture to translate MRLs. We evaluated our models on diff erent MRLs such as Czech, Farsi, German, Russian, and Turkish, and observed significant improvements. The main goal targeted in this research was to incorporate morphological information into MT and define architectures which are able to model the complex nature of MRLs. The results obtained from our experimental studies confirm that we were able to achieve our goal
    corecore