39,392 research outputs found

    Evolution of galaxies due to self-excitation

    Get PDF
    These lectures will cover methods for studying the evolution of galaxies since their formation. Because the properties of a galaxy depend on its history, an understanding of galaxy evolution requires that we understand the dynamical interplay between all components. The first part will emphasize n-body simulation methods which minimize sampling noise. These techniques are based on harmonic expansions and scale linearly with the number of bodies, similar to Fourier transform solutions used in cosmological simulations. Although fast, until recently they were only efficiently used for small number of geometries and background profiles. These same techniques may be used to study the modes and response of a galaxy to an arbitrary perturbation. In particular, I will describe the modal spectra of stellar systems and role of damped modes which are generic to stellar systems in interactions and appear to play a significant role in determining the common structures that we see. The general development leads indirectly to guidelines for the number of particles necessary to adequately represent the gravitational field such that the modal spectrum is resolvable. I will then apply these same excitation to understanding the importance of noise to galaxy evolution.Comment: 24 pages, 7 figures, using Sussp.sty (included). Lectures presented at the NATO Advanced Study Institute, "The Restless Universe: Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems," Blair Atholl, July 200

    Stability of planets in triple star systems

    Full text link
    Context: Numerous theoretical studies of the stellar dynamics of triple systems have been carried out, but fewer purely empirical studies that have addressed planetary orbits within these systems. Most of these empirical studies have been for coplanar orbits and with a limited number of orbital parameters. Aims: Our objective is to provide a more generalized empirical mapping of the regions of planetary stability in triples by considering both prograde and retrograde motion of planets and the outer star; investigating highly inclined orbits of the outer star; extending the parameters used to all relevant orbital elements of the triple's stars and expanding these elements and mass ratios to wider ranges that will accommodate recent and possibly future observational discoveries. Methods: Using N-body simulations, we integrated numerically the various four-body configurations over the parameter space, using a symplectic integrator designed specifically for the integration of hierarchical multiple stellar systems. The triples were then reduced to binaries and the integrations repeated to highlight the differences between these two types of system. Results: This established the regions of secular stability and resulted in 24 semi-empirical models describing the stability bounds for planets in each type of triple orbital configuration. The results were then compared with the observational extremes discovered to date to identify regions that may contain undiscovered planets.Comment: 12 pages, 8 figures, 14 tables. Accepted for publication in Astronomy & Astrophysic

    The dark matter content of early-type barred galaxies

    Full text link
    The dynamics of a barred galaxy depends on the pattern speed of its bar. The only direct method for measuring the pattern speed of a bar is the Tremaine-Weinberg technique. This method relies on the analysis of the distribution and dynamics of the stellar component. It is best suited to gas-poor galaxies and therefore it has been restricted to early-type barred galaxies. On the other hand, a variety of indirect methods, which are based on the analysis of the distribution and dynamics of the gaseous component, has been used to measure the bar pattern speed in late-type barred galaxies. The complete sample of galaxies for which the bar pattern speed has been directly measured with the Tremaine-Weinberg method is given. Nearly all the measured bars are as rapidly rotating as they can be. By comparing this result with recent high-resolution N-body simulations of bars in cosmologically-motivated dark matter halos, it is possible to conclude that these bars are not located inside centrally-concentrated halos.Comment: 5 pages. Proceedings of "Baryons in Dark Matter Halos". Novigrad, Croatia, 5-9 Oct 2004. Editors: R. Dettmar, U. Klein, P. Salucci. Published by SISS

    Performance analysis of direct N-body algorithms for astrophysical simulations on distributed systems

    Full text link
    We discuss the performance of direct summation codes used in the simulation of astrophysical stellar systems on highly distributed architectures. These codes compute the gravitational interaction among stars in an exact way and have an O(N^2) scaling with the number of particles. They can be applied to a variety of astrophysical problems, like the evolution of star clusters, the dynamics of black holes, the formation of planetary systems, and cosmological simulations. The simulation of realistic star clusters with sufficiently high accuracy cannot be performed on a single workstation but may be possible on parallel computers or grids. We have implemented two parallel schemes for a direct N-body code and we study their performance on general purpose parallel computers and large computational grids. We present the results of timing analyzes conducted on the different architectures and compare them with the predictions from theoretical models. We conclude that the simulation of star clusters with up to a million particles will be possible on large distributed computers in the next decade. Simulating entire galaxies however will in addition require new hybrid methods to speedup the calculation.Comment: 22 pages, 8 figures, accepted for publication in Parallel Computin

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    The Astrophysical Multipurpose Software Environment

    Get PDF
    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&

    Interplay between Stellar Spirals and the ISM in Galactic Disks

    Full text link
    We propose a new dynamical picture of galactic stellar and gas spirals, based on hydrodynamic simulations in a `live' stellar disk. We focus especially on spiral structures excited in a isolated galactic disk without a stellar bar. Using high-resolution, 3-dimensional N-body/SPH simulations, we found that the spiral features of the gas in galactic disks are formed by essentially different mechanisms from the galactic shock in stellar density waves. The stellar spiral arms and the interstellar matter on average corotate in a galactic potential at any radii. Unlike the stream motions in the galactic shock, the interstellar matter flows into the local potential minima with irregular motions. The flows converge to form dense gas clouds/filaments near the bottom of the stellar spirals, whose global structures resemble dust-lanes seen in late-type spiral galaxies. The stellar arms are non-steady; they are wound and stretched by the galactic shear, and thus local densities of the arm change on a time scale of ~ 100 Myrs, due to bifurcating or merging with other arms. This makes the gas spirals associated with the stellar arms non-steady. The association of dense gas clouds are eventually dissolved into inter-arm regions with non-cirucular motions. Star clusters are formed from the cold, dense gases, whose ages are less than ~30 Myrs, and they are roughly associated with the background stellar arms without a clear spatial offset between gas spiral arms and distribution of young stars.Comment: 13 pages, 12 figures, accepted by ApJ. Higher resolution of ms.pdf is available at http://d.pr/Nvjk A targzipped Supplementary movies is available at http://d.pr/TV6

    Dynamical Processes in Globular Clusters

    Full text link
    Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.Comment: Chapter 10, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
    • …
    corecore