181,119 research outputs found

    Is there a mass discrepancy in the Cepheid binary OGLE-LMC-CEP0227?

    Full text link
    Context. The Cepheid mass discrepancy, the difference between masses predicted from stellar evolution and stellar pulsation calculations, is a challenge for the understanding of stellar astrophysics. Recent models of the eclipsing binary Cepheid OGLE-LMC-CEP-0227 have suggested that the discrepancy may be resolved. Aims. We explore for what physical parameters do stellar evolution models agree with the measured properties of OGLE-LMC-CEP0227 and compare to canonical stellar evolution models assuming no convective core overshooting. Methods. We construct state-of-the-art stellar evolution models for varying mass, metallicity, and convective core overshooting and compare the stellar evolution predictions with the observed properties. Results. The observed mass, effective temperature, and radius of the two stars in the binary system are well fit by numerous combinations of physical parameters, suggesting a Cepheid mass discrepancy of 10-20% relative to canonical stellar evolution models. Conclusions. The properties of the observed binary Cepheid suggest that the Cepheid mass discrepancy is still a challenge and requires more specific observations, such as the rate of period change, to better constrain and understand the necessary physics for stellar evolution models to resolve the discrepancy.Comment: 5 pages, 3 figures, A&A accepte

    The propagation of uncertainties in stellar population synthesis modeling I: The relevance of uncertain aspects of stellar evolution and the IMF to the derived physical properties of galaxies

    Full text link
    The stellar masses, mean ages, metallicities, and star formation histories of galaxies are now commonly estimated via stellar population synthesis (SPS) techniques. SPS relies on stellar evolution calculations from the main sequence to stellar death, stellar spectral libraries, phenomenological dust models, and stellar initial mass functions (IMFs). The present work is the first in a series that explores the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars. A Monte-Carlo Markov-Chain approach is taken to fit near-UV through near-IR photometry of a representative sample of low- and high-redshift galaxies with this new SPS model. Significant results include the following: 1) including uncertainties in stellar evolution, stellar masses at z~0 carry errors of ~0.3 dex at 95% CL with little dependence on luminosity or color, while at z~2, the masses of bright red galaxies are uncertain at the ~0.6 dex level; 2) either current stellar evolution models, current observational stellar libraries, or both, do not adequately characterize the metallicity-dependence of the thermally-pulsating asymptotic giant branch phase; 3) conservative estimates on the uncertainty of the slope of the IMF in the solar neighborhood imply that luminosity evolution per unit redshift is uncertain at the ~0.4 mag level in the K-band, which is a substantial source of uncertainty for interpreting the evolution of galaxy populations across time; 4) The more plausible assumption of a distribution of stellar metallicities, rather than a fixed value as is usually assumed, can have significant effects on the interpretation of colors blueward of the V-band. (ABRIDGED)Comment: 21 pages, 17 figures, ApJ in pres

    Pulsation Period Change & Classical Cepheids: Probing the Details of Stellar Evolution

    Full text link
    Measurements of secular period change probe real-time stellar evolution of classical Cepheids making these measurements powerful constraints for stellar evolution models, especially when coupled with interferometric measurements. In this work, we present stellar evolution models and measured rates of period change for two Galactic Cepheids: Polaris and l Carinae, both important Cepheids for anchoring the Cepheid Leavitt law (period-luminosity relation). The combination of previously-measured parallaxes, interferometric angular diameters and rates of period change allows for predictions of Cepheid mass loss and stellar mass. Using the stellar evolution models, We find that l Car has a mass of about 9 MM_\odot consistent with stellar pulsation models, but is not undergoing enhanced stellar mass loss. Conversely, the rate of period change for Polaris requires including enhanced mass-loss rates. We discuss what these different results imply for Cepheid evolution and the mass-loss mechanism on the Cepheid instability strip.Comment: 2 pages, 1 figure, Poster presented at IAU307: New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, Editors: G. Meynet, C. Georgy, J.H. Groh & Ph. Ste

    Monte Carlo Simulations of Globular Cluster Evolution. V. Binary Stellar Evolution

    Full text link
    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE/BSE from Hurley et. al (2000, 2002). We describe the modifications we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared to simulations without any stellar evolution. In particular, we find that the mass loss from stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi steady state of the cluster evolution as noticed in Paper IV. We simulate a large grid of clusters varying the initial cluster mass, binary fraction, and concentration and compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that our simulated cluster properties agree well with the observed GGC properties. We explore in some detail qualitatively different clusters in different phases of their evolution, and construct synthetic Hertzprung-Russell diagrams for these clusters.Comment: 46 preprint pages, 18 figures, 3 tables, submitted to Ap
    corecore