3,227 research outputs found

    Spectral rigidity of automorphic orbits in free groups

    Full text link
    It is well-known that a point T∈cvNT\in cv_N in the (unprojectivized) Culler-Vogtmann Outer space cvNcv_N is uniquely determined by its \emph{translation length function} ∣∣.∣∣T:FN→R||.||_T:F_N\to\mathbb R. A subset SS of a free group FNF_N is called \emph{spectrally rigid} if, whenever T,T′∈cvNT,T'\in cv_N are such that ∣∣g∣∣T=∣∣g∣∣T′||g||_T=||g||_{T'} for every g∈Sg\in S then T=T′T=T' in cvNcv_N. By contrast to the similar questions for the Teichm\"uller space, it is known that for N≥2N\ge 2 there does not exist a finite spectrally rigid subset of FNF_N. In this paper we prove that for N≥3N\ge 3 if H≤Aut(FN)H\le Aut(F_N) is a subgroup that projects to an infinite normal subgroup in Out(FN)Out(F_N) then the HH-orbit of an arbitrary nontrivial element g∈FNg\in F_N is spectrally rigid. We also establish a similar statement for F2=F(a,b)F_2=F(a,b), provided that g∈F2g\in F_2 is not conjugate to a power of [a,b][a,b]. We also include an appended corrigendum which gives a corrected proof of Lemma 5.1 about the existence of a fully irreducible element in an infinite normal subgroup of of Out(FN)Out(F_N). Our original proof of Lemma 5.1 relied on a subgroup classification result of Handel-Mosher, originally stated by Handel-Mosher for arbitrary subgroups H≤Out(FN)H\le Out(F_N). After our paper was published, it turned out that the proof of the Handel-Mosher subgroup classification theorem needs the assumption that HH be finitely generated. The corrigendum provides an alternative proof of Lemma~5.1 which uses the corrected, finitely generated, version of the Handel-Mosher theorem and relies on the 0-acylindricity of the action of Out(FN)Out(F_N) on the free factor complex (due to Bestvina-Mann-Reynolds). A proof of 0-acylindricity is included in the corrigendum.Comment: Included a corrigendum which gives a corrected proof of Lemma 5.1 about the existence of a fully irreducible element in an infinite normal subgroup of of Out(F_N). Note that, because of the arXiv rules, the corrigendum and the original article are amalgamated into a single pdf file, with the corrigendum appearing first, followed by the main body of the original articl

    Semi-Preemptive Routing on Trees

    Get PDF
    We study a variant of the pickup-and-delivery problem (PDP) in which the objects that have to be transported can be reloaded at most d times, for a given integer d. This problem is known to be polynomially solvable on paths or cycles and NP-complete on trees. We present a (4/3+epsilon)-approximation algorithm if the underlying graph is a tree. By using a result of Charikar et al. (1998), this can be extended to a O(log n log log n)-approximation for general graphs

    Semi-Preemptive Routing on Trees

    Get PDF
    We study a variant of the pickup-and-delivery problem (PDP) in which the objects that have to be transported can be reloaded at most d times, for a given integer d. This problem is known to be polynomially solvable on paths or cycles and NP-complete on trees. We present a (4/3+epsilon)-approximation algorithm if the underlying graph is a tree. By using a result of Charikar et al. (1998), this can be extended to a O(log n log log n)-approximation for general graphs

    Rectilinear Steiner Trees in Narrow Strips

    Get PDF
    A rectilinear Steiner tree for a set PP of points in R2\mathbb{R}^2 is a tree that connects the points in PP using horizontal and vertical line segments. The goal of Minimal Rectilinear Steiner Tree is to find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of Minimal Rectilinear Steiner Tree for point sets PP inside the strip (−∞,+∞)×[0,δ](-\infty,+\infty)\times [0,\delta] depends on the strip width δ\delta. We obtain two main results. 1) We present an algorithm with running time nO(δ)n^{O(\sqrt{\delta})} for sparse point sets, that is, point sets where each 1×δ1\times\delta rectangle inside the strip contains O(1)O(1) points. 2) For random point sets, where the points are chosen randomly inside a rectangle of height δ\delta and expected width nn, we present an algorithm that is fixed-parameter tractable with respect to δ\delta and linear in nn. It has an expected running time of 2O(δδ)n2^{O(\delta \sqrt{\delta})} n.Comment: 21 pages, 13 figure
    • …
    corecore