6,064 research outputs found

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    X-ray Reflection Spectroscopy of the Black Hole GX 339-4: Exploring the Hard State with Unprecedented Sensitivity

    Full text link
    We analyze {\it simultaneously} six composite {\it RXTE} spectra of GX 339--4 in the hard state comprising 77 million counts collected over 196 ks. The source spectra are ordered by luminosity and spanthe range 1.6\% to 17\% of the Eddington luminosity. Crucially, using our new tool {\tt pcacorr}, we re-calibrate the data to a precision of 0.1\%, an order of magnitude improvement over all earlier work. Using our advanced reflection model {\tt relxill}, we target the strong features in the component of emission reflected from the disk, namely, the relativistically-broadened Fe K emission line, the Fe K edge and the Compton hump. We report results for two joint fits to the six spectra: For the first fit, we fix the spin parameter to its maximal value (a∗=0.998a_*=0.998) and allow the inner disk radius RinR_{\rm in} to vary. Results include (i) precise measurements of RinR_{\rm in}, with evidence that the disk becomes slightly truncated at a few percent of Eddington; and (ii) an order-of-magnitude swing with luminosity in the high energy cutoff, which reaches >890>890 keV at our lowest luminosity. For the second fit, we make the standard assumption in estimating spin that the inner edge of the accretion disk is located at the innermost stable circular orbit (Rin=RISCOR_\mathrm{in} = R_\mathrm{ISCO}) and find a∗=0.95−0.05+0.03a_* = 0.95^{+0.03}_{-0.05} (90\% confidence, statistical). For both fits, and at the same level of statistical confidence, we estimate that the disk inclination is i=48±1i = 48\pm 1 deg and that the Fe abundance is super-solar, AFe=5±1A_\mathrm{Fe} = 5\pm1.Comment: Accepted for publication in ApJ, 20 pages, 13 figure

    Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding

    Get PDF
    A protograph-based low-density parity-check (LDPC) code design technique for bandwidth-efficient coded modulation is presented. The approach jointly optimizes the LDPC code node degrees and the mapping of the coded bits to the bit-interleaved coded modulation (BICM) bit-channels. For BICM with uniform input and for BICM with probabilistic shaping, binary-input symmetric-output surrogate channels for the code design are used. The constructed codes for uniform inputs perform as good as the multi-edge type codes of Zhang and Kschischang (2013). For 8-ASK and 64-ASK with probabilistic shaping, codes of rates 2/3 and 5/6 with blocklength 64800 are designed, which operate within 0.63dB and 0.69dB of continuous AWGN capacity for a target frame error rate of 1e-3 at spectral efficiencies of 1.38 and 4.25 bits/channel use, respectively.Comment: 9 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:1501.0559

    Two are better than one: Fundamental parameters of frame coherence

    Full text link
    This paper investigates two parameters that measure the coherence of a frame: worst-case and average coherence. We first use worst-case and average coherence to derive near-optimal probabilistic guarantees on both sparse signal detection and reconstruction in the presence of noise. Next, we provide a catalog of nearly tight frames with small worst-case and average coherence. Later, we find a new lower bound on worst-case coherence; we compare it to the Welch bound and use it to interpret recently reported signal reconstruction results. Finally, we give an algorithm that transforms frames in a way that decreases average coherence without changing the spectral norm or worst-case coherence

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore