932 research outputs found

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for sd/2s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for d/2<sd\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    The chromatic index of strongly regular graphs

    Full text link
    We determine (partly by computer search) the chromatic index (edge-chromatic number) of many strongly regular graphs (SRGs), including the SRGs of degree k18k \leq 18 and their complements, the Latin square graphs and their complements, and the triangular graphs and their complements. Moreover, using a recent result of Ferber and Jain it is shown that an SRG of even order nn, which is not the block graph of a Steiner 2-design or its complement, has chromatic index kk, when nn is big enough. Except for the Petersen graph, all investigated connected SRGs of even order have chromatic index equal to their degree, i.e., they are class 1, and we conjecture that this is the case for all connected SRGs of even order.Comment: 10 page

    Coloring decompositions of complete geometric graphs

    Get PDF
    A decomposition of a non-empty simple graph GG is a pair [G,P][G,P], such that PP is a set of non-empty induced subgraphs of GG, and every edge of GG belongs to exactly one subgraph in PP. The chromatic index χ([G,P])\chi'([G,P]) of a decomposition [G,P][G,P] is the smallest number kk for which there exists a kk-coloring of the elements of PP in such a way that: for every element of PP all of its edges have the same color, and if two members of PP share at least one vertex, then they have different colors. A long standing conjecture of Erd\H{o}s-Faber-Lov\'asz states that every decomposition [Kn,P][K_n,P] of the complete graph KnK_n satisfies χ([Kn,P])n\chi'([K_n,P])\leq n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case in which the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.Comment: 18 pages, 5 figure

    Linear spaces with many small lines

    Get PDF
    AbstractIn this paper some of the work in linear spaces in which most of the lines have few points is surveyed. This includes existence results, blocking sets and embeddings. Also, it is shown that any linear space of order v can be embedded in a linear space of order about 13v in which there are no lines of size 2

    The chromatic index of strongly regular graphs

    Get PDF
    corecore