358 research outputs found

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research

    Information Forensics and Security: A quarter-century-long journey

    Get PDF
    Information forensics and security (IFS) is an active R&D area whose goal is to ensure that people use devices, data, and intellectual properties for authorized purposes and to facilitate the gathering of solid evidence to hold perpetrators accountable. For over a quarter century, since the 1990s, the IFS research area has grown tremendously to address the societal needs of the digital information era. The IEEE Signal Processing Society (SPS) has emerged as an important hub and leader in this area, and this article celebrates some landmark technical contributions. In particular, we highlight the major technological advances by the research community in some selected focus areas in the field during the past 25 years and present future trends

    Residential access control system using QR code and the IoT

    Get PDF
    This paper presents a residential access control system (RACs) using QR codes and the internet of things (IoT) to improve security and help house owners. The contribution of this paper is that it proposes two mechanisms in the authentication phase and the verification phase, respectively, to enhance residential access control. The main idea is using cryptography between smartphones and access control devices. The cryptography compares secret codes on the key server via the internet. The RACs can notify a user of the residential access status through the LINE application and show the statuses of devices through the network platform for the internet of everything (NETPIE) in real-time. We compare this systemโ€™s performance with that of the current access control methods in terms of security and access speed. The results show that this system has more security and has an access speed of 5.63 seconds. Moreover, this system is safer and more flexible than the comparative methods and suitable for contactless authentication

    ์ธ๊ณต์ง€๋Šฅ ๋ณด์•ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ƒ๋ฌผ์ •๋ณดํ•™์ „๊ณต, 2021. 2. ์œค์„ฑ๋กœ.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐœ์ธ๋ณ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ฐ˜๋ฉด ๊ฐœ์ธ์˜ ๋ฏผ๊ฐํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์œ ์ถœ๋˜๋Š” ๊ฒฝ์šฐ์—๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์นจํ•ด์˜ ์†Œ์ง€๊ฐ€ ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š”๋ฐ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ์™ธ๋ถ€์— ์œ ์ถœ๋˜์ง€ ์•Š๋„๋ก ํ•˜๊ฑฐ๋‚˜, ์ต๋ช…ํ™”, ๋ถ€ํ˜ธํ™” ๋“ฑ์˜ ๋ณด์•ˆ ๊ธฐ๋ฒ•์„ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์— ์ ์šฉํ•˜๋Š” ๋ถ„์•ผ๋ฅผ Private AI๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ๋…ธ์ถœ๋  ๊ฒฝ์šฐ ์ง€์  ์†Œ์œ ๊ถŒ์ด ๋ฌด๋ ฅํ™”๋  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์ ๊ณผ, ์•…์˜์ ์ธ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์„ ์˜ค์ž‘๋™ํ•  ์ˆ˜ ์žˆ๊ณ  ์ด๋Ÿฌํ•œ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ ์ž์ฒด์— ๋Œ€ํ•œ ์œ„ํ˜‘์€ Secure AI๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ณต๊ฒฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ๊ฒฝ๋ง์˜ ๊ฒฐ์† ์‚ฌ๋ก€๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ธฐ์กด์˜ AEs ์—ฐ๊ตฌ๋“ค์€ ์ด๋ฏธ์ง€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณด๋‹ค ๋ณต์žกํ•œ heterogenousํ•œ PDF ๋ฐ์ดํ„ฐ๋กœ ์—ฐ๊ตฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ generative ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์—ฌ ๊ณต๊ฒฉ ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ด์ƒ ํŒจํ„ด์„ ๋ณด์ด๋Š” ์ƒ˜ํ”Œ์„ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ๋Š” DNA steganalysis ๋ฐฉ์–ด ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ๋ฅผ ์œ„ํ•ด generative ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ต๋ช…ํ™” ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋ณธ ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ๊ณต๊ฒฉ ๋ฐ ๋ฐฉ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•˜๋Š”๋ฐ ๋ฐœ์ƒ๋˜๋Š” ํ”„๋ผ์ด๋ฒ„์‹œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ณ„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ธฐ๋ฐ˜ํ•œ ์ผ๋ จ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    Artificial Fingerprinting for Generative Models: {R}ooting Deepfake Attribution in Training Data

    Get PDF
    • โ€ฆ
    corecore