355 research outputs found

    Towards a Quantum Steganographic Capacity of Lossy Bosonic Channels

    Get PDF
    Quantum steganography is the extension of steganography to the quantum setting, wherein a quantum protocol (e.g.: a quantum error-correcting code) is used to hide classical or quantum information. Because of the unique nature of quantum states and channels, quantum steganography can be stronger than classical steganography. A lot of effort has been devoted to characterizing how much information can be embedded into various quantum channels with or without noise, and recently, several quantum steganography protocols have been developed and analyzed that improve on earlier work by exploiting a concept known in information theory as channel resolvability. This paper first provides a concise background survey of specific topics from relevant disciplines in classical as well as quantum information theory, and then presents a formulation of the problem concerning the characterization of the steganographic capacity for a specific type of quantum channel called the lossy bosonic channel.Undergraduat

    Perfectly secure steganography: hiding information in the quantum noise of a photograph

    Full text link
    We show that the quantum nature of light can be used to hide a secret message within a photograph. Using this physical principle we achieve information-theoretic secure steganography, which had remained elusive until now. The protocol is such that the digital picture in which the secret message is embedded is perfectly undistinguishable from an ordinary photograph. This implies that, on a fundamental level, it is impossible to discriminate a private communication from an exchange of photographs.Comment: 5 pages, 3 figures + appendix : 5 pages, 6 figure

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    A Comparison of Cryptography Courses

    Full text link
    The author taught two courses on cryptography, one at Duke University aimed at non-mathematics majors and one at Rose-Hulman Institute of Technology aimed at mathematics and computer science majors. Both tried to incorporate technical and societal aspects of cryptography, with varying emphases. This paper will discuss the strengths and weaknesses of both courses and compare the differences in the author's approach.Comment: 14 pages; to appear in Cryptologi
    • …
    corecore