8 research outputs found

    Pooled Steganalysis in JPEG: how to deal with the spreading strategy?

    Get PDF
    International audienceIn image pooled steganalysis, a steganalyst, Eve, aims to detect if a set of images sent by a steganographer, Alice, to a receiver, Bob, contains a hidden message. We can reasonably assess that the steganalyst does not know the strategy used to spread the payload across images. To the best of our knowledge, in this case, the most appropriate solution for pooled steganalysis is to use a Single-Image Detector (SID) to estimate/quantify if an image is cover or stego, and to average the scores obtained on the set of images. In such a scenario, where Eve does not know the spreading strategies, we experimentally show that if Eve can discriminate among few well-known spreading strategies, she can improve her steganalysis performances compared to a simple averaging or maximum pooled approach. Our discriminative approach allows obtaining steganalysis efficiencies comparable to those obtained by a clairvoyant, Eve, who knows the Alice spreading strategy. Another interesting observation is that DeLS spreading strategy behaves really better than all the other spreading strategies. Those observations results in the experimentation with six different spreading strategies made on Jpeg images with J-UNIWARD, a state-of-the-art Single-Image-Detector, and a dis-criminative architecture that is invariant to the individual payload in each image, invariant to the size of the analyzed set of images, and build on a binary detector (for the pooling) that is able to deal with various spreading strategies

    Convolutional Neural Networks for Image Steganalysis in the Spatial Domain

    Get PDF
    Esta tesis doctoral muestra los resultados obtenidos al aplicar Redes Neuronales Convolucionales (CNNs) para el estegoanálisis de imágenes digitales en el dominio espacial. La esteganografía consiste en ocultar mensajes dentro de un objeto conocido como portador para establecer un canal de comunicación encubierto para que el acto de comunicación pase desapercibido para los observadores que tienen acceso a ese canal. Steganalysis se dedica a detectar mensajes ocultos mediante esteganografía; estos mensajes pueden estar implícitos en diferentes tipos de medios, como imágenes digitales, archivos de video, archivos de audio o texto sin formato. Desde 2014, los investigadores se han interesado especialmente en aplicar técnicas de Deep Learning (DL) para lograr resultados que superen los métodos tradicionales de Machine Learning (ML).Is doctoral thesis shows the results obtained by applying Convolutional Neural Networks (CNNs) for the steganalysis of digital images in the spatial domain. Steganography consists of hiding messages inside an object known as a carrier to establish a covert communication channel so that the act of communication goes unnoticed by observers who have access to that channel. Steganalysis is dedicated to detecting hidden messages using steganography; these messages can be implicit in di.erent types of media, such as digital images, video €les, audio €les, or plain text. Since 2014 researchers have taken a particular interest in applying Deep Learning (DL) techniques to achieving results that surpass traditional Machine Learning (ML) methods

    Steganalisis Blind dengan Metode Convolutional Neural Network (CNN) Yedroudj- Net terhadap Tools Steganografi

    Get PDF
    Steganalisis digunakan untuk mendeteksi ada atau tidaknya file steganografi. Salah satu kategori steganalisis adalah blind steganalisis, yaitu cara untuk mendeteksi file rahasia tanpa mengetahui metode steganografi apa yang digunakan. Sebuah penelitian mengusulkan bahwa metode Convolutional Neural Networks (CNN) dapat mendeteksi file steganografi menggunakan metode terbaru dengan nilai probabilitas kesalahan rendah dibandingkan metode lain, yaitu CNN Yedroudj-net. Sebagai metode steganalisis Machine Learning terbaru, diperlukan eksperimen untuk mengetahui apakah Yedroudj-net dapat menjadi steganalisis untuk keluaran dari tools steganografi yang biasa digunakan. Mengetahui kinerja CNN Yedroudj-net sangat penting, untuk mengukur tingkat kemampuannya dalam hal steganalisis dari beberapa tools. Apalagi sejauh ini, kinerja Machine Learning masih diragukan dalam blind steganalisis. Ditambah beberapa penelitian sebelumnya hanya berfokus pada metode tertentu untuk membuktikan kinerja teknik yang diusulkan, termasuk Yedroudj-net. Penelitian ini akan menggunakan lima alat yang cukup baik dalam hal steganografi, yaitu Hide In Picture (HIP), OpenStego, SilentEye, Steg dan S-Tools, yang tidak diketahui secara pasti metode steganografi apa yang digunakan pada alat tersebut. Metode Yedroudj-net akan diimplementasikan dalam file steganografi dari output lima alat. Kemudian perbandingan dengan tools steganalisis lain, yaitu StegSpy. Hasil penelitian menunjukkan bahwa Yedroudj-net bisa mendeteksi keberadaan file steganografi. Namun, jika dibandingkan dengan StegSpy hasil gambar yang tidak terdeteksi lebih tinggi.AbstractSteganalysis is used to detect the presence or absence of steganograpy files. One category of steganalysis is blind steganalysis, which is a way to detect secret files without knowing what steganography method is used. A study proposes that the Convolutional Neural Networks (CNN) method can detect steganographic files using the latest method with a low error probability value compared to other methods, namely CNN Yedroudj-net. As the latest Machine Learning steganalysis method, an experiment is needed to find out whether Yedroudj-net can be a steganalysis for the output of commonly used steganography tools. Knowing the performance of CNN Yedroudj-net is very important, to measure the level of ability in terms of steganalysis from several tools. Especially so far, Machine Learning performance is still doubtful in blind steganalysis. Plus some previous research only focused on certain methods to prove the performance of the proposed technique, including Yedroudj-net. This research will use five tools that are good enough in terms of steganography, namely Hide In Picture (HIP), OpenStego, SilentEye, Steg and S-Tools, which is not known exactly what steganography methods are used on the tool. The Yedroudj-net method will be implemented in a steganographic file from the output of five tools. Then compare with other steganalysis tools, namely StegSpy. The results showed that Yedroudj-net could detect the presence of steganographic files. However, when compared with StegSpy the results of undetected images are higher

    Adaptive spatial image steganography and steganalysis using perceptual modelling and machine learning

    Get PDF
    Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research.Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research

    Steganalyzing Images of Arbitrary Size with CNNs

    No full text
    corecore