36 research outputs found

    Detecting Steganography of Adaptive Multirate Speech with Unknown Embedding Rate

    Get PDF

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Covert Voice over Internet Protocol communications based on spatial model

    Get PDF
    This paper presents a new spatial steganography model for covert communications over Voice over Internet Protocol (VoIP), providing a solution to the issue of increasing the capacity of covert VoIP channels without compromising the imperceptibility of the channels. Drawing from Orthogonal Modulation Theory in communications, the model introduced two concepts, orthogonal data hiding features and data hiding vectors, to covert VoIP communications. By taking into account the variation characteristics of VoIP audio streams in the time domain, a hiding vector negotiation mechanism was suggested to achieve dynamic self-adaptive ste-ganography in media streams. Experimental results on VoIP steganography show that the pro-posed steganographic method effectively depicted the spatial and temporal characteristics of VoIP audio streams, and enhanced robustness against detection of steganalysis tools, thereby improving the security of covert VoIP communications

    Using Transcoding for Hidden Communication in IP Telephony

    Get PDF
    The paper presents a new steganographic method for IP telephony called TranSteg (Transcoding Steganography). Typically, in steganographic communication it is advised for covert data to be compressed in order to limit its size. In TranSteg it is the overt data that is compressed to make space for the steganogram. The main innovation of TranSteg is to, for a chosen voice stream, find a codec that will result in a similar voice quality but smaller voice payload size than the originally selected. Then, the voice stream is transcoded. At this step the original voice payload size is intentionally unaltered and the change of the codec is not indicated. Instead, after placing the transcoded voice payload, the remaining free space is filled with hidden data. TranSteg proof of concept implementation was designed and developed. The obtained experimental results are enclosed in this paper. They prove that the proposed method is feasible and offers a high steganographic bandwidth. TranSteg detection is difficult to perform when performing inspection in a single network localisation.Comment: 17 pages, 16 figures, 4 table

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    A Dynamic Steganography Method for Web Images with Average RunLength-Coding

    Get PDF
    Web page has many redundancies, especially the dynamic html multimedia object. This paper proposes a novel method to employ the commonly used image elements on web pages. Due to the various types of image format and complexity of image contents and their position information, secret message bits could be coded to embed in these complex redundancies. Together with a specific covering code called average run-length-coding, the embedding efficiency could be reduced to a low level and the resulting capacity outperforms traditional content-based image steganography, which modifies the image data itself and causes a real image quality degradation. Our experiment result demonstrates that the proposed method has limited processing latency and high embedding capacity. What’s more, this method has a low algorithm complexity and less image quality distortion compared with existing steganography methods

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Statistical pattern recognition for audio-forensics : empirical investigations on the application scenarios audio steganalysis and microphone forensics

    Get PDF
    Magdeburg, Univ., Fak. fĂŒr Informatik, Diss., 2013von Christian KrĂ€tze
    corecore