88 research outputs found

    Comparison of the Adomian decomposition method and the variational iteration method in solving the moving boundary problem

    Get PDF
    AbstractIn this paper, a comparison between two methods: the Adomian decomposition method and the variational iteration method, used for solving the moving boundary problem, is presented. Both of the methods consist in constructing the appropriate iterative or recurrence formulas, on the basis of the equation considered and additional conditions, enabling one to determine the successive elements of a series or sequence approximating the function sought. The precision and speed of convergence of the procedures compared are verified with an example

    Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

    Full text link
    In this paper, indirect collocation approach based on compactly supported radial basis function is applied for solving Volterras population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterras model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the problem, we use the well-known CSRBF: Wendland3,5. Numerical results and residual norm 2 show good accuracy and rate of convergence.Comment: 8 pages , 1 figure. arXiv admin note: text overlap with arXiv:1008.233

    The radiative conductive transfer equation in cylinder geometry : rocket launch exhaust phenomena for the Alcântara Launch Center

    Get PDF
    In this work we present a solution for the radiative conductive transfer equation in cylinder geometry for a solid cylinder. We discuss a semi-analytical approach to the non-linear N S problem, where the solution is constructed by Laplace transform and a decomposition method. The obtained solution allows then to construct the relevant near field to characterize the source term for dispersion problems when adjusting the model parameters such as albedo, emissivity, radiation conduction and others in comparison to the observation, that are relevant for far field dispersion processes and may be handled independently from the present problem. In addition to the solution method we also report some solutions and numerical simulations

    Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer

    Get PDF
    Physiological transport phenomena often feature ciliated internal walls. Heat, momentum and multi-species mass transfer may arise and additionally non-Newtonian biofluid characteristics are common in smaller vessels. Blood (containing hemoglobin) or other physiological fluids containing ionic constituents in the human body respond to magnetic body forces when subjected to external (extra-corporeal) magnetic fields. Inspired by such applications, in the present work we consider the forced convective flow of an electrically-conducting viscoelastic physiological fluid through a ciliated channel under the action of a transverse magnetic field. The flow is generated by a metachronal wave formed by the tips of cilia which move to and fro in a synchronized fashion. The presence of deposits (fats, cholesterol etc) in the channel is mimicked with a Darcy porous medium drag force model. The two-dimensional unsteady momentum equation and energy equation are simplified with a stream function and small Reynolds' number approximation. The effect of energy loss is simulated via the inclusion of viscous dissipation in the energy conservation (heat) equation. The non-dimensional, transformed moving boundary value problem is solved with appropriate wall conditions via the semi-numerical Adomian decomposition method (ADM). The velocity, temperature and pressure distribution are computed in the form of infinite series constructed by ADM and numerically evaluated in a symbolic software (MATHEMATICA). Streamline distributions are also presented. The influence of Hartmann number (magnetic parameter), Jeffrey first and second viscoelastic parameters, permeability parameter (modified Darcy number), and Brinkman number (viscous heating parameter) on velocity, temperature, pressure gradient and bolus dynamics is visualized graphically. The flow is decelerated with increasing with increasing Hartmann number and Jeffery first parameter in the core flow whereas it is accelerated in the vicinity of the walls. Increasing permeability and Jeffery second parameter are observed to accelerate the core flow and decelerate the peripheral flow near the ciliated walls. Increasing Hartmann number elevates pressure gradient whereas it is reduced with permeability parameter. Temperatures are elevated with increasing magnetic parameter, Brinkman number and Jeffery second parameter. Increasing magnetic field is also observed to reduce the quantity of trapped boluses. Increasing permeability parameter suppresses streamline amplitudes. Both the magnitude and quantity of trapped boluses is elevated with an increase in both first and second Jeffery parameters

    Effect of Thermal Radiation on the Entropy Generation of Hydromagnetic Flow Through Porous Channel

    Get PDF
    In this study, effect of thermal radiation on the entropy generation rate of a hydromagnetic incompressible viscous flow through porous channel has been studied. The governing equations are formulated, non-dimensionalized and solved by Adomian decomposition and Differential Transform methods. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphicall
    corecore