101 research outputs found

    Deformable kernels for early vision

    Get PDF
    Early vision algorithms often have a first stage of linear-filtering that `extracts' from the image information at multiple scales of resolution and multiple orientations. A common difficulty in the design and implementation of such schemes is that one feels compelled to discretize coarsely the space of scales and orientations in order to reduce computation and storage costs. A technique is presented that allows: 1) computing the best approximation of a given family using linear combinations of a small number of `basis' functions; and 2) describing all finite-dimensional families, i.e., the families of filters for which a finite dimensional representation is possible with no error. The technique is based on singular value decomposition and may be applied to generating filters in arbitrary dimensions and subject to arbitrary deformations. The relevant functional analysis results are reviewed and precise conditions for the decomposition to be feasible are stated. Experimental results are presented that demonstrate the applicability of the technique to generating multiorientation multi-scale 2D edge-detection kernels. The implementation issues are also discussed

    Deformable kernels for early vision

    Get PDF
    Caption title.Includes bibliographical references (p. 22-24).Research supported by the U.S. Army Research Office. DAAL01-86-K-0171Pietro Perona

    Combining geometric edge detectors for feature detection

    Get PDF
    We propose a novel framework for the analysis and modeling of discrete edge filters, based on the notion of signed rays. This framework will allow us to easily deduce the geometric and localization properties of a family of first-order filters, and use this information to design custom filter banks for specific applications. As an example, a set of angle-selective corner detectors is constructed for the detection of buildings in video sequences. This clearly illustrates the merit of the theory for solving practical recognition problems

    CLOSED FORM OF THE STEERED ELONGATED HERMITE-GAUSS WAVELETS

    Get PDF
    We provide a closed form, both in the spatial and in the frequency domain, of a family of wavelets which arise from steering elongated Hermite-Gauss filters. These wavelets have interesting mathematical properties, as they form new dyadic families of eigenfunctions of the 2D Fourier transform, and generalize the well known Laguerre-Gauss harmonics. A special notation introduced here greatly simplifies our proof and unifies the cases of even and odd orders. Applying these wavelets to edge detection increases the performance of about 12.5% with respect to standard methods, in terms of the Pratt’s figure of merit, both for noisy and noise-free input images

    Perceptual Color Image Smoothing via a New Region-Based PDE Scheme

    Get PDF
    In this paper, we present a new color image regularization method using a rotating smoothing filter. This approach combines a pixel classification method, which roughly determines if a pixel belongs to a homogenous region or an edge with an anisotropic perceptual edge detector capable of computing two precise diffusion directions. Using a now classical formulation, image regularization is here treated as a variational model, where successive iterations of associated PDE (Partial Differential Equation) are equivalent to a diffusion process. Our model uses two kinds of diffusion: isotropic and anisotropic diffusion. Anisotropic diffusion is accurately controlled near edges and corners, while isotropic diffusion is applied to smooth regions either homogeneous or corrupted by noise. A comparison of our approach with other regularization methods applied on real images demonstrate that our model is able to efficiently restore images as well as handle diffusion, and at the same time preserve edges and corners well

    Anisotropic Filtering Techniques applied to Fingerprints

    Get PDF

    Reshuffling: a fast algorithm for filtering with arbitrary kernels

    Get PDF

    Local Geometric Transformations in Image Analysis

    Get PDF
    The characterization of images by geometric features facilitates the precise analysis of the structures found in biological micrographs such as cells, proteins, or tissues. In this thesis, we study image representations that are adapted to local geometric transformations such as rotation, translation, and scaling, with a special emphasis on wavelet representations. In the first part of the thesis, our main interest is in the analysis of directional patterns and the estimation of their location and orientation. We explore steerable representations that correspond to the notion of rotation. Contrarily to classical pattern matching techniques, they have no need for an a priori discretization of the angle and for matching the filter to the image at each discretized direction. Instead, it is sufficient to apply the filtering only once. Then, the rotated filter for any arbitrary angle can be determined by a systematic and linear transformation of the initial filter. We derive the Cramér-Rao bounds for steerable filters. They allow us to select the best harmonics for the design of steerable detectors and to identify their optimal radial profile. We propose several ways to construct optimal representations and to build powerful and effective detector schemes; in particular, junctions of coinciding branches with local orientations. The basic idea of local transformability and the general principles that we utilize to design steerable wavelets can be applied to other geometric transformations. Accordingly, in the second part, we extend our framework to other transformation groups, with a particular interest in scaling. To construct representations in tune with a notion of local scale, we identify the possible solutions for scalable functions and give specific criteria for their applicability to wavelet schemes. Finally, we propose discrete wavelet frames that approximate a continuous wavelet transform. Based on these results, we present a novel wavelet-based image-analysis software that provides a fast and automatic detection of circular patterns, combined with a precise estimation of their size

    Steerable filters and local analysis of image structure

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 1992.Includes bibliographical references (leaves 124-133).by William Tafel Freeman.Ph.D
    corecore