139 research outputs found

    3D Steerable Wavelets in Practice

    Full text link

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    On The Continuous Steering of the Scale of Tight Wavelet Frames

    Full text link
    In analogy with steerable wavelets, we present a general construction of adaptable tight wavelet frames, with an emphasis on scaling operations. In particular, the derived wavelets can be "dilated" by a procedure comparable to the operation of steering steerable wavelets. The fundamental aspects of the construction are the same: an admissible collection of Fourier multipliers is used to extend a tight wavelet frame, and the "scale" of the wavelets is adapted by scaling the multipliers. As an application, the proposed wavelets can be used to improve the frequency localization. Importantly, the localized frequency bands specified by this construction can be scaled efficiently using matrix multiplication

    Dynamic Steerable Blocks in Deep Residual Networks

    Get PDF
    Filters in convolutional networks are typically parameterized in a pixel basis, that does not take prior knowledge about the visual world into account. We investigate the generalized notion of frames designed with image properties in mind, as alternatives to this parametrization. We show that frame-based ResNets and Densenets can improve performance on Cifar-10+ consistently, while having additional pleasant properties like steerability. By exploiting these transformation properties explicitly, we arrive at dynamic steerable blocks. They are an extension of residual blocks, that are able to seamlessly transform filters under pre-defined transformations, conditioned on the input at training and inference time. Dynamic steerable blocks learn the degree of invariance from data and locally adapt filters, allowing them to apply a different geometrical variant of the same filter to each location of the feature map. When evaluated on the Berkeley Segmentation contour detection dataset, our approach outperforms all competing approaches that do not utilize pre-training. Our results highlight the benefits of image-based regularization to deep networks

    Riesz pyramids for fast phase-based video magnification

    Get PDF
    We present a new compact image pyramid representation, the Riesz pyramid, that can be used for real-time phase-based motion magnification. Our new representation is less overcomplete than even the smallest two orientation, octave-bandwidth complex steerable pyramid, and can be implemented using compact, efficient linear filters in the spatial domain. Motion-magnified videos produced with this new representation are of comparable quality to those produced with the complex steerable pyramid. When used with phase-based video magnification, the Riesz pyramid phase-shifts image features along only their dominant orientation rather than every orientation like the complex steerable pyramid.Quanta Computer (Firm)Shell ResearchNational Science Foundation (U.S.) (CGV-1111415)Microsoft Research (PhD Fellowship)Massachusetts Institute of Technology. Department of MathematicsNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374
    corecore