105 research outputs found

    Distributed Beamforming of Two Autonomous Transmitters

    Get PDF
    The distributed beamformer is a scheme which provides spatial diversity to combat the undesired effects of the wireless channel. The distributed beamformer requires strict carrier frequency and phase synchronization in order to maximize SNR at a destination for fixed transmit powers. This project investigated the synchronization of two such transmitters in a wired single path channel with off-the-shelf integrated circuits. Additionally, a stable hardware platform for an acoustic (wireless) implementation of such a distributed beamformer was provided

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Directional speech acquisition using a MEMS cubic acoustical sensor microarray cluster.

    Get PDF
    This thesis presents the design of a directional speech acquisition system using a MEMS cubic acoustical sensor microarray cluster to improve speech intelligibility in a noisy reverberant acoustical environment. In the proposed system, five identical acoustical sensor arrays constitute the five sides of a cubic geometry whereas the other side of the cube is to be used for interconnection and packaging purposes. Each of the sensor microarrays is associated with two beam shapes: a main beam to acquire speech signal from a particular direction and a scanning beam to locate and track a potential speech source. A microelectronics based beam synthesis engine controls the selection of a main beam to acquire speech signals from a particular direction based on the output level of the five scanning beams. In this way the developed system provides an improved reduced noise dynamic directional speech acquisition system covering a 3-D space. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .H8. Source: Masters Abstracts International, Volume: 45-01, page: 0411. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006

    Distributed Microphone Array System for Two-way Audio Communication

    Get PDF
    Tässä työssä esitellään hajautettu mikrofoniryhmäjärjestelmä kahdensuuntaisessa äänikommunikaatiossa. Järjestelmän tavoitteena on paikallistaa hallitseva puhuja ja tallentaa puhesignaali mahdollisimman korkealaatuisesti. Työssä esiteltävässä järjestelmässä jokainen mikrofoniryhmä toimii polynomirakenteella parametrisoituna keilanmuodostajana (PBF), joka mahdollistaa jatkuvan keilanohjauksen. Hallitsevan puhelähteen suunta päätellään PBF:n jokaisen keilan ulostulotehoista. Lopuksi yhdistämällä jokaisen PBF:n kaikkien keilojen ulostulotehot muodostetaan avaruudellinen todennäköisyysfunktio (SLF), jonka suurin arvo määrää puhujan paikan. Puhesignaali tallennetaan ohjaamalla puhujaa lähinnä olevan PBF:n keila puhujan suuntaan. Tässä työssä esiteltävän järjestelmän toiminta arvioitiin simuloidulla ja mitatulla datalla. Arvionti näyttää, että toteutettu järjestelmä pystyy paikallistamaan puhujan noin 40 cm paikannustarkkuudella ja järjestelmä vaimentaa muista suunnista tulevia häiriölähteitä noin 15 dB. Lopuksi järjestelmä toteutettiin reaaliakaisena systeeminä Pure Data signaalinkäsittelyympäristössä.In this work a distributed microphone array system for two-way audio communication is presented. The goal of the system is to locate the dominant speaker and capture the speech signal with highest possible quality. In the presented system each microphone array works as a Polynomial Beamformer (PBF) thus enabling continuous beam steering. The output power of each PBF beam is used to determine the direction of the dominant speech source. Finally, a Spatial Likelihood Function (SLF) is formed by combining the output beam powers of each microphone array and the speaker is determined to be in the point that has highest value of SLF. The audio signal capture is done by steering the closest microphone array to the direction of the speaker. The presented audio capture front-end was evaluated with simulated and measured data. The evaluation shows that the implemented system gives approximately 40 cm localization accuracy and 15 dB attenuation of interference sources. Finally the system was implemented to run in real-time in the Pure Data signal processing environment

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Network Challenges of Novel Sources of Big Data

    Get PDF
    Networks and networking technologies are the key components of Big Data systems. Modern and future wireless sensor networks (WSN) act as one of the major sources of data for Big Data systems. Wireless networking technologies allow to offload the traffic generated by WSNs to the Internet access points for further delivery to the cloud storage systems. In this thesis we concentrate on the detailed analysis of the following two networking aspects of future Big Data systems: (i) efficient data collection algorithms in WSNs and (ii) wireless data delivery to the Internet access points.The performance evaluation and optimization models developed in the thesis are based on the application of probability theory, theory of stochastic processes, Markov chain theory, stochastic and integral geometries and the queuing theory.The introductory part discusses major components of Big Data systems, identify networking aspects as the subject of interest and formulates the tasks for the thesis. Further, different challenges of Big Data systems are presented in detail with several competitive architectures highlighted. After that, we proceed investigating data collection approaches in modern and future WSNs. We back up the possibility of using the proposed techniques by providing the associated performance evaluation results. We also pay attention to the process of collected data delivery to the Internet backbone access point, and demonstrate that the capacity of conventional cellular systems may not be sufficient for a set of WSN applications including both video monitoring at macro-scale and sensor data delivery from the nano/micro scales. Seeking for a wireless technology for data offloading from WSNs, we study millimeter and terahertz bands. We show there that the interference structure and signal propagation are fundamentally different due to the required use of highly directional antennas, human blocking and molecular absorption. Finally, to characterize the process of collected data transmission from a number of WSNs over the millimeter wave or terahertz backhauls we formulate and solve a queuing system with multiple auto correlated inputs and the service distribution corresponding to the transmission time over a wireless channel with hybrid automatic repeat request mechanism taken into account

    NASA Tech Briefs, November 2009

    Get PDF
    Topics covered include: Cryogenic Chamber for Servo-Hydraulic Materials Testing; Apparatus Measures Thermal Conductance Through a Thin Sample from Cryogenic to Room Temperature; Rover Attitude and Pointing System Simulation Testbed; Desktop Application Program to Simulate Cargo-Air-Drop Tests; Multimodal Friction Ignition Tester; Small-Bolt Torque-Tension Tester; Integrated Spacesuit Audio System Enhances Speech Quality and Reduces Noise; Hardware Implementation of a Bilateral Subtraction Filter; Simple Optoelectronic Feedback in Microwave Oscillators; Small X-Band Oscillator Antennas; Free-Space Optical Interconnect Employing VCSEL Diodes; Discrete Fourier Transform Analysis in a Complex Vector Space; Miniature Scroll Pumps Fabricated by LIGA; Self-Assembling, Flexible, Pre-Ceramic Composite Preforms; Flight-speed Integral Image Analysis Toolkit; Work Coordination Engine; Multi-Mission Automated Task Invocation Subsystem; Autonomously Calibrating a Quadrupole Mass Spectrometer; Determining Spacecraft Reaction Wheel Friction Parameters; Composite Silica Aerogels Opacified with Titania; Multiplexed Colorimetric Solid-Phase Extraction; Detecting Airborne Mercury by Use of Polymer/Carbon Films; Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate; Pressure-Energized Seal Rings to Better Withstand Flows; Rollerjaw Rock Crusher; Microwave Sterilization and Depyrogenation System; Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images; NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells; Critical Coupling Between Optical Fibers and WGM Resonators; Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister; Alternative Determination of Density of the Titan Atmosphere; Solar Rejection Filter for Large Telescopes; Automated CFD for Generation of Airfoil Performance Tables; Progressive Classification Using Support Vector Machines; Active Learning with Irrelevant Examples; A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis; Deployable Shroud for the International X-Ray Observatory; Improved Model of a Mercury Ring Damper; Optoelectronic pH Meter: Further Details; X-38 Advanced Sublimator; and Solar Simulator Represents the Mars Surface Solar Environment

    Array signal processing for source localization and enhancement

    Get PDF
    “A common approach to the wide-band microphone array problem is to assume a certain array geometry and then design optimal weights (often in subbands) to meet a set of desired criteria. In addition to weights, we consider the geometry of the microphone arrangement to be part of the optimization problem. Our approach is to use particle swarm optimization (PSO) to search for the optimal geometry while using an optimal weight design to design the weights for each particle’s geometry. The resulting directivity indices (DI’s) and white noise SNR gains (WNG’s) form the basis of the PSO’s fitness function. Another important consideration in the optimal weight design are several regularization parameters. By including those parameters in the particles, we optimize their values as well in the operation of the PSO. The proposed method allows the user great flexibility in specifying desired DI’s and WNG’s over frequency by virtue of the PSO fitness function. Although the above method discusses beam and nulls steering for fixed locations, in real time scenarios, it requires us to estimate the source positions to steer the beam position adaptively. We also investigate source localization of sound and RF sources using machine learning techniques. As for the RF source localization, we consider radio frequency identification (RFID) antenna tags. Using a planar RFID antenna array with beam steering capability and using received signal strength indicator (RSSI) value captured for each beam position, the position of each RFID antenna tag is estimated. The proposed approach is also shown to perform well under various challenging scenarios”--Abstract, page iv

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    • …
    corecore