769 research outputs found

    Coupling problem in thermal systems simulations

    Get PDF
    Building energy simulation is playing a key role in building design in order to reduce the energy consumption and, consequently, the CO2 emissions. An object-oriented tool called NEST is used to simulate all the phenomena that appear in a building. In the case of energy and momentum conservation and species transport, the current solver behaves well, but in the case of mass conservation it takes a lot of time to reach a solution. For this reason, in this work, instead of solving the continuity equations explicitly, an implicit method based on the Trust Region algorithm is proposed. Previously, a study of the properties of the model used by NEST-Building software has been done in order to simplify the requirements of the solver. For a building with only 9 rooms the new solver is a thousand times faster than the current method

    Enhancing structure relaxations for first-principles codes: an approximate Hessian approach

    Get PDF
    We present a method for improving the speed of geometry relaxation by using a harmonic approximation for the interaction potential between nearest neighbor atoms to construct an initial Hessian estimate. The model is quite robust, and yields approximately a 30% or better reduction in the number of calculations compared to an optimized diagonal initialization. Convergence with this initializer approaches the speed of a converged BFGS Hessian, therefore it is close to the best that can be achieved. Hessian preconditioning is discussed, and it is found that a compromise between an average condition number and a narrow distribution in eigenvalues produces the best optimization.Comment: 9 pages, 3 figures, added references, expanded optimization sectio

    Geometrical inverse preconditioning for symmetric positive definite matrices

    Full text link
    We focus on inverse preconditioners based on minimizing F(X)=1cos(XA,I)F(X) = 1-\cos(XA,I), where XAXA is the preconditioned matrix and AA is symmetric and positive definite. We present and analyze gradient-type methods to minimize F(X)F(X) on a suitable compact set. For that we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of F(X)F(X) on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included
    corecore