594 research outputs found

    Wireless Sensor Network Security Model for D2P Attacks Using Zero Knowledge Protocols

    Get PDF
    Wireless sensor networks (WSNs) are innovative large-scale wireless networks that consist of distributed, lowpower, small-size devices using sensors to cooperatively collect information through infrastructure less ad-hoc wireless network. These small devices used in wireless sensor nodes are called sensor nodes. They are envisioned to play an important role in a wide variety of areas ranging from critical military surveillance applications to forest fire monitoring and building security monitoring in the near future. In these networks, a large number of sensor nodes are deployed to monitor a vast field, where the operational conditions are most often harsh or even hostile. Since these networks are usually deployed in remote places and left unattended, they should be equipped with security mechanisms to defend against attacks such as node capture, physical tampering, eavesdropping, denial of service, etc. Unfortunately, traditional security mechanisms with high overhead are not feasible for resource constrained sensor nodes

    Time-slotted voting mechanism for fusion data assurance in wireless sensor networks under stealthy attacks

    Get PDF
    In wireless sensor networks, data fusion is often performed in order to reduce the overall message transmission from the sensors toward the base station. We investigate the problem of data fusion assurance in multi-level data fusion or transmission in this paper. Different to a recent approach of direct voting where the base station polls other nodes directly regarding to the received fusion result, we propose a scheme that uses the time-slotted voting technique. In this scheme, each fusion node broadcasts its fusion data or "vote" during its randomly assigned time slot. Only the fusion result with enough number of votes will be accepted. Thus, our scheme eliminates the polling process and eases the energy consumption burden on the base station or the fusion data receiver, which could well be the intermediate nodes. Our analysis and simulation results support our claim of superiority of the proposed scheme

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore