36 research outputs found

    On post-resonance backward whirl in an overhung rotor with snubbing contact

    Get PDF
    Rotordynamic systems are central to many aerospace and heavy-duty industrial applications. The vibrational response of such systems is usually associated with forward whirl (FW) and backward whirl (BW) precessions. It is well known in the literature that the BW precession generally precedes the passage through the critical FW resonance precession. Therefore, it can be named as a pre-resonance BW frequency (Pr-BW). However, another kind of BW has been recently observed to be immediately excited after the passage through the critical FW resonance frequency in cracked rotors with anisotropic supports during run-up and coast-down operations. Consequently, this kind of BW can be named as a post-resonance backward whirl (Po-BW) precession. The Pr-BW and Po-BW phenomena are investigated here with an overhung rotor system that exhibits snubbing contact and stiffness anisotropy in the supports. Incorporating the snubbing moment couple into the equations of motion of the considered overhung rotor model yields a piecewise and strongly nonlinear system. Full-spectrum analysis is employed to capture the BW zones of rotational speeds in the whirl response. Wavelet transform spectrum analysis is also employed to determine the frequency content in the Pr-BW and the Po-BW zones. Three cases are considered in this numerical study to explore the effect of the support stiffness isotropy and anisotropy with active and inactive snubbing contact on the Po-BW excitation. For all cases, the Po-BW zones of rotational speeds are found. Moreover, the broadness and recurrence of the Po-BW zones of rotational speeds are more prominent for the cases of active snubbing contact. Even though the Pr-BW and Po-BW zones are excited at different shaft rotational speeds, they are found to possess nearly similar BW frequencies which are less than the FW resonance frequency of the considered system

    Dynamics under Uncertainty: Modeling Simulation and Complexity

    Get PDF
    The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    Applicable Solutions in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: KaĆșmierczak, MarekTechnical editor: KaĆșmierczak, Mare

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Mathematical Modeling and Simulation in Mechanics and Dynamic Systems

    Get PDF
    The present book contains the 16 papers accepted and published in the Special Issue “Mathematical Modeling and Simulation in Mechanics and Dynamic Systems” of the MDPI “Mathematics” journal, which cover a wide range of topics connected to the theory and applications of Modeling and Simulation of Dynamic Systems in different field. These topics include, among others, methods to model and simulate mechanical system in real engineering. It is hopped that the book will find interest and be useful for those working in the area of Modeling and Simulation of the Dynamic Systems, as well as for those with the proper mathematical background and willing to become familiar with recent advances in Dynamic Systems, which has nowadays entered almost all sectors of human life and activity

    Study of the dependencies between in-service degradation and key design parameters with uncertainty for mechanical components.

    Get PDF
    The design features of machine components can impact significantly in its life while in-service, and only relatively few studies which are case specific have been undertaken with respect to this. Hence, the need for more understanding of the influence of geometric design features on the service life of a machine component. The aim of this research is to develop a methodology to assess the degradation life of a mechanical component due to geometric design influence in the presence of uncertainties and its application for the optimisation of the component in the presence of these uncertainties. This thesis has proposed a novel methodology for assessing the thermal fatigue life, a degradation mechanism based on the influence of design features in the presence of uncertainties. In this research a novel uncertainty analysis methodology that is able to handle simultaneously the presence of aleatory and epistemic uncertainties is proposed for a more realistic prediction and assessment of a components thermal fatigue degradation life estimated using finite element analysis. A design optimisation method for optimising the components design in the presence of mixed uncertainty, aleatory and epistemic uncertainties is also proposed and developed. The performance of the proposed methodology is analysed through the use of passenger vehicle brake discs. The novel uncertainty quantification methodology was initially applied on a solid brake disc, and validated for generalisability using a vented brake disc which has more complex design features. While the optimisation method as proposed was applied on the vented brake disc. With these this research proposes a validated set of uncertainty and optimisation methodology in the presence of mixed uncertainties for a design problem. The methodologies proposed in this research provide design engineers with a methodology to design components that are robust by giving the design with the least uncertainty in its output as result of design parameters inherent variability while simultaneously providing the design with the least uncertainty in estimation of its life as a result of the use of surrogate models.PhD in Manufacturin

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers
    corecore